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ABSTRACT 

Inorganic salts are very promising as high-temperature heat transfer fluids and thermal 

storage media in solar thermal power production. The dual-tank molten salt storage system, for 

example, has been demonstrated to be effective for continuous operation in solar power tower 

plants. In this particular storage regime, however, much of the thermal storage potential of the salts 

is ignored. Most inorganic salts are characterized by high heats of fusion, so their use as phase-

change materials (PCMs) allows for substantially higher energy storage density than their use as 

sensible heat storage alone. For instance, use of molten sodium-potassium eutectic salt over a 

temperature range of 260 to 560°C (the approximate operating parameters of a proposed utility-

scale storage system) allows for a volumetric energy storage density of 212 kWhth/m3, whereas the 

use of pure sodium nitrate (𝑇𝑇𝑚𝑚 = 307°C) over the same temperature range (utilizing both sensible 

and latent heat) yields a storage density of 347 kWhth/m3. 

The main downside to these media is their relatively low thermal conductivity (typically 

on the order of 1 W/m-K). While low conductivity is not as much an issue with heat transfer fluids, 

which, owing to convective heat transfer, are not as reliant on conduction as a heat transfer mode, 

it can become important for PCM storage strategies, in which transient charging behavior will 

necessarily involve heating the solid-phase material up to and through the process of melting. This 

investigation seeks to develop new methods of improving heat transfer in inorganic salt latent heat 

thermal energy storage (TES) media, such as sodium / potassium nitrates and chlorides. These 

methods include two basic strategies: first, inclusion of conductivity-enhancing additives, and 

second, incorporation of infrared absorptive additives in otherwise transparent media. Also, in the 
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process, a group of chloride based salts for use as sensible storage media and/or heat transfer fluids 

has been developed, based on relevant cost and thermophysical properties data. 

For direct conductivity enhancement, the idea is simple: a PCM with low conductivity can 

be enhanced by incorporation of nanoparticulate additives at low concentration (~5 wt %). This 

concept has been explored extensively with lower temperature heat transfer fluids such as water, 

ethylene glycol, etc. (e.g., nanofluids), as well as with many lower temperature PCMs, such as 

paraffin wax. Extension of the concept to high temperature inorganic salt thermal storage media 

brings new challenges—most importantly, material compatibility. Also, maintenance of the 

additive distribution can be more difficult. Promising results were obtained in both these regards 

with nitrate salt systems. 

The second heat transfer enhancement strategy examined here is more novel in principle: 

increasing the infrared absorption of a semitransparent salt PCM (e.g., NaCl) with a suitable 

additive can theoretically enhance radiative heat transfer (for sufficiently high temperatures), 

thereby compensating for low thermal conductivity. Here again, material compatibility and 

maintenance of additive dispersion become the focus, but in very different ways, owing to the 

higher temperatures of application (>600°C) and the much lower concentration of additives 

required (~0.5 wt %). Promising results have been obtained in this case, as well, in terms of 

demonstrably greater infrared absorptance with inclusion of additives. 
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CHAPTER 1 INTRODUCTION 

It is widely agreed that the increased development and implementation of renewable energy 

(e.g., solar, wind, biomass) will benefit the environment, principally due to the decline in 

greenhouse gas emissions expected from phasing out fossil fuels. Furthermore, so-called clean 

energy technologies afford additional benefits—namely, decreased emissions of other pollutants. 

Solar energy in particular seems ideal for aiding in the transition from non-renewable to renewable 

energy sources, as over much of the planet the sun is an abundant and easily accessible resource. 

When contemplating the strengths and weaknesses of various energy technologies, it is 

worthwhile to examine the energy picture as it stands today. In Figure 1, the total yearly electricity 

generation for the U.S. across various resource types is plotted for the years of 2013 and 2014, 

using data taken from the U.S. Energy Information Administration (EIA) [1]. According to these 

data, renewable energy sources account for approximately 13.7% of the total electricity generation 

for 2014. Solar is seen to comprise a comparatively small part of the total electricity market; 

however, its generation grew by 116% from 2013 to 2014—more than any other resource type. In 

other words, solar energy has the most room to grow and the greatest potential for growth of any 

renewable energy source. 

However, renewable energy technologies in general, including solar energy, suffer from 

intermittency. As an illustration, the solar irradiance as a function of the hour of the day and month 

of the year for Tampa, Florida (27.96°N, 82.54°W) is plotted in Figure 2, using the ASHRAE 

Clear Sky Model [2, 3]. Data for a single day, October 21, are extracted and plotted in Figure 3 

with measured data obtained from the National Solar Radiation Database (NSRDB) [4]. In this 



www.manaraa.com

 

2 
 

way, two types of solar resource intermittency are demonstrated: the ASHRAE model shows the 

daily and seasonal variations due to the earth’s rotation and orbit around the sun, while the NSRDB 

data show the additional, generally unpredictable variation due to other factors—in this case, 

weather events. Other renewable energy technologies, such as tidal and wind power, also suffer 

from intermittency. For example, electricity generated by wind is plotted with total consumption 

in Figure 4 for two weeks in Denmark in January 2000 [5]. It is seen that wind power yields rather 

irregular generation patterns (some days there is no generation, and some days wind power 

accounts for over one third of the peak consumption), and these patterns are considerably less 

predictable than the consumption patterns. The key to overcoming intermittency is energy storage: 

during peak output (in excess of demand) energy is stored; later, when output declines (below the 

demand), the energy is redistributed to compensate for the shortfall. An example of such a strategy 

specific to solar energy utilization is depicted in Figure 5. This dissertation will investigate 

materials with potential for use in thermal energy storage (TES), specifically with solar power 

generation in mind. 

Inorganic salts are already very promising as high-temperature heat transfer fluids and 

thermal storage media in solar thermal power production. Recent efforts in Arizona have 

demonstrated 6 hours nighttime generation from dual-tank molten salt storage, and similar plants 

elsewhere in the American southwest—solar power tower with dual-tank molten salt storage—are 

projected to be completed in the near future. Yet in this particular storage regime, much of the 

potential of inorganic salts as storage media is ignored. These materials are characterized by high 

heats of fusion, so their use as phase-change materials (PCMs) allows for substantially higher 

energy storage density than their use as sensible heat storage alone. For instance, use of molten 

sodium-potassium nitrate eutectic salt over a temperature range of 260 to 560°C (the approximate 
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operating parameters of a proposed utility-scale storage system) allows for a volumetric energy 

storage density of 212 kWhth/m3, whereas the use of pure sodium nitrate (𝑇𝑇𝑚𝑚 = 307°C) over the 

same temperature range (utilizing both sensible and latent heat) yields a storage density of 347 

kWhth/m3. Also of interest, chloride salts, including sodium chloride and the eutectic system 

formed by sodium and potassium chloride, display both higher melting temperatures and higher 

latent heats than their nitrate counterparts. Taking into account the relatively low cost of NaCl, it 

seems likely that these salts will find greater application as solar energy conversion strategies 

develop toward greater operating temperatures and efficiencies. 

These materials, however, are significantly hampered by their relatively low thermal 

conductivity (typically on the order of 1 W/m-K). While low conductivity is not as much an issue 

with heat transfer fluids, which, owing to convective heat transfer, are not as reliant on conduction 

as a heat transfer mode, it can become important for PCM storage strategies, in which transient 

charging behavior will necessarily involve heating the solid-phase material up to and through the 

process of melting. This research discusses novel strategies for overcoming the typically low 

thermal conductivities of inorganic salt PCMs—namely, direct enhancement of thermal 

conductivity or radiative heat transfer through inclusion of appropriate additive materials.   

In Chapter 2, a review of potential PCM heat transfer enhancement techniques is presented, 

including a treatment of prior work on radiative transfer enhancement. In this chapter, as well, a 

PCM screening process is described, whereby the salts of interest in this study, nitrates and 

chlorides, are selected. In Chapter 3, case studies based on direct conductivity enhancement are 

presented, elucidating the potential for direct enhancement of thermal conductivity through 

addition of high conductivity particles. In Chapter 4, a more detailed survey of the chloride salts 

is performed, with the goal of identifying promising pure salts and multicomponent systems for 



www.manaraa.com

 

4 
 

either latent or sensible TES. In Chapter 5, enhancement of heat transfer by increasing infrared 

absorption via addition of IR-absorptive particles in some of these salt systems is examined. In 

Chapter 6, numerical techniques for studying these systems are explored, and the potential 

performance enhancement using these techniques is quantified. Finally, in Chapter 7, conclusions 

of this work are summarized. 

 

 

 

Figure 1 Total yearly electricity generation, U.S. The percent change in generation capacity from 
2013 to 2014 is shown above each category.  
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Figure 2 Solar irradiance for Tampa, Florida. Calculated using the ASHRAE Clear Sky Model.  

 

 

Figure 3 Solar irradiance for Tampa, Florida, on October 21.  
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Figure 4 Electricity generation via wind versus total consumption, Denmark, January 2000 [5]. 

  

 

 

Figure 5 Energy storage scheme for a solar power plant [6, 7].  
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CHAPTER 2 LITERATURE REVIEW 

2.1 Introduction 

This chapter examines various strategies for overcoming the typically low thermal 

conductivities of inorganic salt PCMs—namely, inclusion of conductivity-enhancing additives, 

encapsulation / dispersal for increased heat transfer area, and enhancement of other modes of heat 

transfer.  Particular attention is paid to the work proposed for this research: 

• Thermal conductivity enhancement through addition of high conductivity particles 

• Thermal radiative transfer enhancement through addition of infrared (IR-) absorptive 

materials. 

Additionally, at the conclusion of the chapter, a discussion of the selection of PCM for study is 

presented. 

2.2 Background 

TES will likely play an important role in the renewable technology development of the 

near future. It may find applicability in utilizing process / waste heat, aiding in temperature 

regulation of sensitive electronics, building heating / cooling, and power conversion—in each case 

allowing for improved overall efficiencies over conventional technologies [8, 9]. It has been said 

that the oldest form of TES took the form of ice harvested from lakes and rivers in the winter for 

cooling during warmer months. This type of “seasonal” TES itself entails a phase change process 

(melting of the ice), and the Hungarian parliament building is still air-conditioned in part by this 

TES scheme [10]. TES is especially important in power generation, and has advantages over 

technologies such as mechanical (e.g., compressed air storage) or chemical (e.g., batteries) in that 
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it generally entails lower capital cost [11, 12]. Solar thermal power possesses a versatility unique 

among renewable energy technologies: the ability to dovetail with existing and widely prevalent 

fossil fuel conversion systems in combined cycle schemes. Further, for solar thermal power plants, 

TES is a simple, efficient, and cost effective way to store energy by converting sunlight to heat as 

an intermediate step, holding it until it is needed, at which time it can be fed to a heat engine [13]. 

More information on the technological details on solar power plants can be found in the review by 

Barlev et al [14]; extensive review of the importance and practical design concerns of TES in 

concentrating solar power plants can be found in the work by Kuravi et al [12]. 

TES can generally be divided into three distinct categories: sensible heat, latent heat, and 

thermochemical energy [3]. Sensible heat is perhaps the most familiar; it stored by heating a mass 

of material of constant phase (e.g., does not melt or evaporate) from a lower temperature to a 

higher temperature, and its quantification requires knowledge of the material’s specific heat 

capacity (𝑐𝑐𝑝𝑝), which itself may vary with temperature. Latent heat, on the other hand, stems from 

a phase change and attendant change in enthalpy of the storage medium—that is, a solid-solid 

phase change [crystallographic reorientation of sodium nitrate (NaNO3)  at 276°C], a solid-liquid 

phase change (e.g., melting of NaNO3 at the temperature of 306°C), a solid-gas phase change (i.e., 

sublimation, as ice to water vapor, for instance), or a liquid-gas phase change (e.g., evaporative 

cooling). In this way latent heat storage makes use of phase-change materials (PCMs), and they 

have potential to offer great improvements over sensible heat storage alone, owing to the typically 

large quantities of energy required for phase change and the potential to store / deliver heat a 

consistent temperature (i.e., the phase-change temperature) [15]. TES via thermochemical energy 

is illustrated in Figure 6. Thermochemical storage is very promising because of its potential for 
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significant energy storage capacity (mass basis) [13]; however, it faces a number of technical 

challenges, and it will not be discussed further in this dissertation. 

As a matter of practicality, solid-liquid PCMs have received the most attention—

evaporative processes tend to require more rigorous containment controls (either pressurized 

containers or substantially larger containment volumes) [16], and solid-solid phase change 

enthalpies tend to be significantly lower in magnitude than those of solid-liquid phase changes 

[17]—but it is important to be aware of the potential energetic contributions of other phase changes 

near the melting point of the material in question. Complications such as this may arise in, for 

example, the NaNO3 system, which has its solid-solid transition only approximately 34 degrees 

below its melting point, or in the NaCl system, which, although it has no solid-solid phase 

transition, has a comparatively high vapor pressure upon melting, and thus any NaCl that 

evaporates (without condensing) will bring about an additional source of absorbed heat [18, 19]. 

The focus of this study is PCM-based TES—that is, primarily the latent heat contribution. 

It is possible to divide such materials into two general categories, organic and inorganic, and 

further to divide the inorganic storage media into salt hydrates, anhydrous salts, and metallic 

materials [16, 17]. This research mainly focuses on TES for concentrating solar power plants, 

which tend to result in working fluid temperatures well in excess of 200°C [20]. At these 

temperatures, organic materials are difficult if not impossible to work with, so organic PCMs will 

not be considered here. Salt hydrates similarly are limited to lower temperatures, and so they will 

be neglected [21]. (For a more information on lower temperature PCMs, including salt hydrates 

and organic PCMs, the reader is referred to the reviews by Farid and A. Sharma [9, 22].) The 

remaining candidate materials are anhydrous salts (either pure or in eutectic or near-eutectic 

mixtures) or metals (either pure or alloyed). Metals are desirable for a number of reasons, including 
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high latent heat of fusion per volume, small change in volume upon melting, and relatively low 

vapor pressures. However, they are generally more expensive than anhydrous salts and much more 

prone to oxidative degradation. Hence, we will focus here on anhydrous salts as PCM thermal 

storage materials. (For discussions on the use of metals as PCMs, the reader is referred to the works 

of Sharma et al, Kenisarin, and Cárdenas and León [9, 17, 23].) 

Inorganic salts have already found widespread use as storage media in a sensible heat 

storage arrangement, such as in the system depicted in Figure 7. Molten salts in utility scale storage 

systems—the two-tank storage system design—are well-established [24]. Indeed, multiple power 

plants soon to come online will make use of this storage strategy, including the Crescent Dunes 

project in Tonopah, Nevada [13]. In this scheme, molten salts, typically either the ternary eutectic 

system of sodium nitrite, sodium nitrate, and potassium nitrate, or the binary eutectic system of 

sodium nitrate and potassium nitrate, are stored in the molten state in two different tanks: a hot 

tank and a cold tank. The cold salt is pumped through heat exchangers which transfer heat from 

the solar field to the salt; after heating, the salt is stored in the hot tank. When production lags (e.g., 

due to cloud cover or off-daylight hours), the process is run in reverse, with the hot salt heating 

the heat transfer fluid (HTF) to run the power block before returning to the cold tank, having 

released its accumulated thermal energy. 

Technically speaking, the storage scheme described above is an example of indirect two-

tank storage; that is, the fluid used in the storage system (molten salt) is segregated from the HTF 

in the solar field (e.g., thermal oil) [25]. As concentrating solar power plants have achieved higher 

temperatures (and correspondingly higher power block efficiencies), a simpler arrangement has 

drawn attention: direct two-tank storage. This arrangement is being investigated extensively for 

fluids with lower melting temperatures. It is important to note that the conventional indirect storage 
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system, when applied to molten salt storage for a thermal oil HTF, requires high pressure on the 

HTF side (high vapor pressure oil) and rather low pressure on the molten salt side (low vapor 

pressure nitrate salts); heat exchangers may therefore be required to accommodate a pressure 

difference of 15 bar or more [26]. The motivation in moving to direct storage is simple: by 

employing the same molten salts as both HTF and TES media, the capital costs savings in 

eliminating these heat exchangers will bring the overall cost of storage down.1  Also, in some 

cases, the heat exchanger involved in the indirect storage arrangement has been shown to decrease 

exergetic efficiency [13]. 

The latent heat of fusion of salts such as these provides a new largely unexplored avenue 

to greater energy storage density. For instance, use of molten sodium-potassium eutectic salt over 

a temperature range of 260 to 560°C (the approximate operating parameters of a proposed utility-

scale storage system) allows for an volumetric energy storage density of 212 kWh/m3, whereas the 

use of pure sodium nitrate (𝑇𝑇𝑚𝑚 = 307°C) over the same temperature range (utilizing both sensible 

and latent heat) yields a storage density of 347 kWh/m3 (thermophysical properties data obtained 

from FactSage [27]). 

To better illustrate, a generalized phase change process for a hypothetical pure substance 

is depicted in Figure 8. In this process, the pure substance undergoes a solid-solid transition (i.e., 

from α to β morphology), followed by melting and then vaporization. The areas of the plot showing 

rising temperature correspond to sensible heating of the various pure phases—that is, α-phase 

solid, β-phase solid, liquid, and vapor. The areas of the plot showing invariant temperature 

represent the various phase transitions, each requiring a certain amount heat to completely convert 

                                                 
1 Other considerations come into play, of course; piping, pumps, and other equipment may need to be redesigned to 
ensure compatibility with the salt(s) as transfer fluid. A detailed economic analysis is required to balance any 
additional costs against the savings of eliminating the heat exchangers. 
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the pure substance from its lower temperature phase to its higher temperature phase. The figure is 

not meant to be quantitative, but it does show qualitatively that the solid-solid transition is less in 

quantity of heat required than the solid-liquid transition, which itself is less than the liquid-vapor 

transition, on a per mole basis.2 

For our purposes, it suffices to focus on the solid-liquid transition. In this case, it has been 

shown that the total heat stored in a storage system making use of media elevated from 

temperature, 𝑇𝑇1, to temperature, 𝑇𝑇2, can be quantified as follows [3]. 

 𝑄𝑄 = � 𝑚𝑚𝑐𝑐𝑝𝑝,𝑠𝑠𝑑𝑑𝑇𝑇
𝑇𝑇𝑚𝑚

𝑇𝑇1
+ 𝑚𝑚∆𝐻𝐻𝑓𝑓𝑓𝑓𝑠𝑠 + � 𝑚𝑚𝑐𝑐𝑝𝑝,𝑙𝑙𝑑𝑑𝑇𝑇

𝑇𝑇2

𝑇𝑇𝑚𝑚
 (2.1) 

Here, 𝑇𝑇𝑚𝑚 represents the phase change temperature, 𝑚𝑚 is the mass of the material, ∆𝐻𝐻𝑓𝑓𝑓𝑓𝑠𝑠 is the 

latent heat of fusion, and 𝑐𝑐𝑝𝑝 is the specific heat capacity, either of the solid (s) or liquid (l) phase. 

As such, the second term of the equation captures the phase transformation heat, while the first 

and the third terms of the equation account for sensible heating of the solid and liquid phases, 

respectively.  

It is worth noting that, as with all sensible storage media, a wider range of temperature 

elevation will result in a greater amount of heat stored; however, the advantage of PCMs as storage 

media is greater for narrower operating temperatures. As an illustration, consider the 

abovementioned comparison between NaNO3 PCM as sensible and latent heat storage and KNO3-

NaNO3 eutectic liquid as sensible heating alone. The PCM was shown to give approximately 64% 

greater volumetric storage density (347÷212=1.637). Let us consider instead a narrower operating 

range—say, 260 to 360°C. In this case, the purely sensible heating media decreases markedly in 

                                                 
2 This is not to say that the liquid-vapor transition is more favorable from a thermal energy storage standpoint; owing 
to the significantly greater molar volume in the vapor phase, storage systems based on a liquid-vapor transition would 
have much less volumetric energy storage density than those based on the solid-liquid transition. 
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volumetric storage density, from 212 to 77.1 kWh/m3; this is due to the much smaller temperature 

range for very nearly the same specific heat capacity and density.3 The PCM, while also 

decreasing, is still substantially higher in storage density at 186 kWh/m3.  So, for this smaller 

temperature range, the PCM offers over 140% more volumetric storage density (186÷77.1=2.412). 

For related reasons, many PCM containment designs stipulate a kind of cascade scheme, where 

higher melting PCMs are placed upstream of lower melting PCMs during charging (i.e., hot HTF 

first encounters the highest melting PCM before flowing to lower melting materials), so that in a 

practical sense narrower temperature ranges pertain to individual PCMs—high melting PCM 

collects heat from the hottest fluid stream, lower melting PCM collects heat from a lower-

temperature fluid stream, etc. [28]. In this way, PCM materials can be a significant improvement 

over conventional sensible heat storage technologies, allowing for greater volumetric energy 

storage density and narrower operating temperatures (greater exergetic efficiency) [13]. 

Typical arrangements for PCM TES units may take many forms. The packed-bed 

arrangement, pictured in Figure 9, entails a number of capsules containing some amount of PCM 

which are packed in a container through with the HTF flows. Another arrangement is a cylindrical 

shell storage unit, pictured in Figure 10. In this case, the PCM is encapsulated in cylindrical tubes 

housed within a larger cylindrical shell; through this shell, the HTF flows (tube-side PCM). An 

alternative but similar arrangement is shown in Figure 11. Here, the PCM is contained in the shell, 

while the HTF flows through the tubes (shell-side PCM). These are just a few of the arrangements 

possible for TES units; more discussion of such geometries and their impact on performance may 

be found in Chapter 6. 

                                                 
3In point of fact, both the specific heat and the density of the liquid eutectic salt vary with respect with temperature, 
and this variation has been accounted for in the calculations. The specific heat increases slightly over the temperature 
range, while the density decreases. However, the gains in volumetric capacity by having a lower temperature (denser) 
fluid are negligible compared to the sensible heating capacity lost with the much shorter span in temperature.  
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2.3 PCM Selection Criteria 

A list of the basic requirements that any potential PCM storage media should meet has been 

presented by Kenisarin [23]: 

• Appropriate melting temperature.  The temperature must be within the operating range 

of interest—ideally comfortably within that range, so as to provide a buffer for any 

transient effects (e.g., supercooling).  Appropriate temperatures can be obtained by 

eutectic combinations of salts, either binary or ternary. 

• High specific heat, enthalpy of fusion, and density.  In other words, the PCM should 

have a high thermal storage capacity, as would be expected of any successful candidate 

thermal storage medium. 

• Congruent phase change.  Congruent phase change results in equal compositions of 

PCM constituents in both (solid and liquid) phases.   

• Reliable convertibility after repeated cycling.  As may be the case with incongruent 

phase change, or if phase change occurs in the presence of labile impurities, repeated 

thermal cycling may compromise the thermophysical properties of the PCM.  It has 

been demonstrated that both the enthalpy of fusion and the melting temperature of 

various eutectic salts and metal alloys can decline markedly after thermal cycling on 

the order of 1000 times [23].  Single-component salt PCMs seem less prone to this 

problem. 

• High thermal conductivity.  The thermal conductivity will dictate the transient behavior 

of the storage system, although convective heat transfer effects will play a major role, 

as well [29].   
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• Tolerable volume change upon phase change.  Salts tend to have significant volume 

changes upon melting, and it is up to the designer to choose among candidate PCMs 

appropriately and account for this effect.   

• Insignificant supercooling.  Supercooling is the phenomenon whereby a system can 

cool to below its phase change temperature without undergoing a phase transition, 

usually the result of a metastable state forming due to a lack of nucleation points [30].  

Such behavior is characteristic of crystalline salts, and can lead to rather drastic 

transient effects.   

• Chemical stability.  The PCM must remain chemically inert over the life of its use—

ideally on the order of many years. 

• Compatibility with construction / container / encapsulation materials.  Material 

compatibility can be a problem with salts especially, many of which have a high 

tendency to corrode common construction materials such as iron.  As such, extensive 

research has been conducted investigating potential encapsulation techniques for use 

with these PCMs [8].   

• Tolerable toxicity.  The toxicity of these compounds warrants attention—the inclusion 

of adequate health and safety measures in the manufacturing design may introduce 

unforeseen costs. 

• Flame and fire safety.  Again, additional health and safety measures to contain the 

threat posed by flammable or explosive candidate PCMs will likely introduce 

unforeseen costs.  Thus, these materials should be avoided where prudent. 
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• Cost.  A principal goal of this project is to reduce the cost of thermal storage as much 

as is practicable.  As such, high cost PCM materials (e.g., lithium salts as opposed to 

sodium salts) is not advisable.   

It is prudent to amend two of these criteria. Firstly, further elaboration is called for 

concerning congruent phase change. Congruent melting stipulates that there is no change in 

composition in undergoing the phase transition—for instance, a eutectic mixture would melt 

congruently, with the same composition of chemical components in the solid phase prior to melting 

reflected in the homogeneous liquid phase after melting. However, the phase change need not be 

perfectly congruent. A so-called “semi-congruent” transition is also tolerable, in the sense that it 

allows for complete melting of the PCM material, despite the fact that it may be slightly off-

eutectic, for instance, in composition [21]. In this case, however, the phase change may occur over 

some range of temperatures, which would be acceptable if it remains small and within the range 

of operating temperatures of the system [31]. Semi-congruent phase change systems will generally 

involve pure PCMs with very small concentrations of impurities (this may be the case with many 

commercially available salts, for instance) or eutectic mixtures of PCMs with some slight excess 

of one or more components (this may occur during industrial scale preparation of PCM mixtures). 

Next, there is the problem of conductivity. Most salts considered in the context of PCMs 

display relatively low thermal conductivities, on the order of 1 W/m-K [23]. In focusing on 

inorganic salt PCMs, therefore, this report must address the inherent problem of low conductivity. 

Use of adjuncts or additives that improve the conductivity of these materials has been 

investigated—specifically, graphite-salt composites show much improved conductivity, while 

generally retaining desired phase change characteristics [32].  Container ribbing or incorporation 

of fins are other possible means of improving heat transfer in poorly conductive PCMs [33]. 
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Ultimately, the goal of this research is to improve the heat transfer characteristics of the PCM 

materials proposed for TES. Below is presented a summary of various heat transfer enhancement 

techniques, with particular emphasis placed on the enhancement of radiative transfer. 

2.4 Heat Transfer Enhancement 

In a comprehensive review of latent heat thermal storage system performance 

enhancement, Jegadheeswaran and Pohekar cite four classifications of enhancement techniques: 

1) use of extended surfaces; 2) incorporation of multiple PCMs; 3) enhancement of thermal 

conductivity; and 4) micro-encapsulation of PCMs [34]. To this we add only the following: 

encapsulation in a more general sense and enhancement of other modes of heat transfer. 

It is important to differentiate between micro-encapsulation and encapsulation in general. 

The benefits of micro-encapsulation in enhancement of heat transfer are clear—a much greater 

surface area to volume ratio will necessarily increase the rate of heat transfer. However, micro-

encapsulation carries with it a complication with regard to another mode of heat transfer: 

convection. Clearly on the PCM side of the encapsulant, natural convection is hindered by virtue 

of the smaller characteristic dimensions of the PCM; more importantly, though, this complication 

can apply to the HTF, as well. Depending on the packing of the micro-encapsulated PCM, the 

encapsulant matrix may be so rigid as to prevent significant convective currents from forming in 

the HTF, thereby decreasing the overall heat transfer rate in spite of the increase in heat transfer 

area [15]. An additional downside is the relative cost of encapsulant—much greater surface area 

relative to PCM volume necessitates much more encapsulation material [8]. 

Alternatively, larger scale encapsulation (e.g., spheroidal pellets on the order of 1 inch in 

diameter) can provide an improvement over the simplistic case of the bulk PCM, but it is not a 

trivial improvement. Encapsulation of pellets in the range of 0.5 to 8.0 cm in diameter has shown 
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to yield distinct benefits in lieu of another promising design, the heat pipe [35]. Furthermore, the 

dimensions of the pellets may allow for improved convective transfer from the HTF, i.e., in the 

pores of a packed bed. 

Enhancement of thermal conductivity of PCMs represents the seemingly most direct route 

to heat transfer improvement. However, it has been demonstrated by numerous studies that 

focusing entirely on the conductive mode of heat transfer, at the expense of other modes, can be 

ultimately deleterious. As alluded to above, the best example of this is seen in the importance of 

convective heat transfer in the melting process of PCMs [36]. In short, conductivity enhancing 

materials may improve the sensible heating regime of the solid phase, but if they significantly 

increase the viscosity of the liquid PCM, they may hinder both the melting process and sensible 

heating of the liquid. 

Conduction typically predominates over convection during the process of solidification. 

Here, we have the reverse situation as with melting: we begin with a completely liquid material. 

As the temperature cools, depending on the liquid’s viscosity, it should transport heat mainly by 

natural convection currents within the liquid. However, as soon as it starts to solidify, there is less 

liquid to provide this mode of transport. Moreover, because the solidification happens along the 

walls of the container, one can expect the convection to be limited to a smaller and smaller region 

within the material (i.e., as the solid layers accumulate on the walls). These solid layers form a 

new barrier to heat transfer from the outer wall of the container to the inner liquid, limiting heat 

transfer according to the solid-state thermal conductivity of the PCM [37]. Similar results were 

demonstrated in the numerical and experimental work of Lamberg et al [38, 39]. 

It is clear, then, that conduction alone is not generally determinative in the phase change 

processes of these heat storage systems. As such, strategies for enhancement of other modes of 
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heat transfer—namely, convection and radiation—open up new avenues for optimizing charging / 

discharging times. Increasing the effectiveness of convective heat transfer is well known: such 

considerations come into play in designing containers (geometry, areas of heat transfer, etc.) and 

also, often, in the incorporation of extended surfaces. As pointed out by Jegadheeswaran and 

Pohekar in their review of work in this field, use of extended surfaces within PCMs must promote 

natural convection in the systems or else provide such a preponderance of additional heat transfer 

area (e.g., by conduction and convection) to overcome any loss in convection caused by their 

presence [34]. In as much as convection is an inherent concern in the design of PCM containers 

and extended surfaces, we will not treat convective heat transfer enhancement as a separate 

category. 

Radiative heat transfer enhancement, however, is worth additional attention, if only for its 

novelty in this field. While much work has been done in the study of lower temperature PCMs 

(organic materials, salt hydrates, etc.), work on PCMs formulated from inorganic salts, such as 

nitrates, is relatively recent. Furthermore, much of this work has focused on relatively low melting 

salts—say, below the temperature of 600°C. As such, little attention has been paid to thermal 

radiation as a heat transfer mode in the melting / solidification of these materials. The potential for 

improving radiative transfer in these materials as a heat transfer enhancement will therefore be 

discussed as a separate category. 

To summarize, the following categories of heat transfer enhancement will be discussed: 

• Extended surfaces 

• Encapsulation 

• High thermal conductivity additives / matrices 

• Radiative transfer enhancement 
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Before continuing, it is worthwhile to mention “direct contact” PCM storage. Direct 

contact thermal storage units—that is, storage units where the HTF is bubbled through the PCM 

material—have been proposed for lower temperature systems, such as salt hydrates [40]. However, 

this is generally not acceptable for use with high temperature inorganic salt PCMs. Firstly, it is 

likely that HTFs employed would react with the salt PCMs. Consider high temperature organic 

HTFs, which may work well with nitrate-based PCMs if segregated through a heat exchange 

system, but would likely be degraded by the highly oxidative nitrate salts [41]. Alternately, if 

molten salt (e.g., KNO3-NaNO3 eutectic) is used as the HTF, there will undoubtedly be some 

miscibility and/or ion exchange with the PCM salt, thereby rendering the heat storage unit 

impractical. In short, it is highly likely that heat storage unit making use of these anhydrous 

inorganic salt PCMs will need containment to segregate the PCM from the HTF. 

2.4.1 Extended Surfaces 

Perhaps the simplest idea of extended surfaces in the design of PCM TES systems are 

embedded pipes—that is, pipes conveying the HTF through a volume of PCM material. Tao et al 

studied this concept and in particular examined three pipe geometries: dimpled, cone-finned, and 

helically finned [42]. They demonstrated that all three performed better (i.e., faster melting times) 

than the smooth pipe, with the helically finned tube showing the greatest improvement relative to 

the smooth pipe. Tamme et al describe such a system with water / steam as the HTF and KNO3-

NaNO3 eutectic as the PCM storage material [43]. At least during discharging, thermal 

conductivity of the PCM will largely determine the rate of heat transfer, as solid PCM begins to 

accumulate on the embedded pipes. Their analysis shows that even a small increase in the thermal 

conductivity of the PCM will significantly decrease the required number of pipes for a specified 

heat flow demand. As such, they examined a variety of ways of incorporating relatively high 
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conductivity graphite into the PCM, including the use of graphite foil, which showed resistance to 

corrosion by nitrate salts, as a kind of conductive fin between sandwiched layers of PCM material 

[44]. 

Fins are very promising as heat transfer enhancing surfaces, and they can be employed on 

either the PCM or HTF side [34]. Common fin arrangements in a latent heat storage system are 

shown in Figure 12. Focusing on lower temperature PCM materials (namely, paraffin), Bugaje 

showed the effectiveness of fins in improving heat transfer rates, with fins performing better than 

star-shaped matrices and improving phase change times for both melting and freezing, with the 

effect more pronounced during solidification [45]. Steinmann examined systems with both 

graphite and aluminum fins [46]. Both systems displayed improved heat transfer. Moreover, a 

pilot-scale heat storage unit with aluminum fins was operated for more than 4000 hours (168 

thermal cycles) with no obvious degradation of the aluminum fins; no mention was made of any 

decline in performance over the course of the pilot study. 

A more novel example of extended surfaces in PCM storage unit design is the heat pipe 

[47]. As with embedded tubes, the PCM can either surround tubes or be placed within them, in 

either case with HTF flowing on the other side; a schematic showing the PCM outside the tubes is 

shown in Figure 13. In either case, the heat pipes are best arranged so as to be perpendicular to the 

HTF flow (i.e., see Figure 14). The heat pipe serves as a high conductivity bridge between the 

PCM and the HTF. It has an additional fluid within it, whose evaporation and condensation 

increases the effective conductivity of the heat pipe. Extensive work on this topic has been 

undertaken by Nithyanandam and Pitchumani [48, 49]. In a subsequent economic analysis, 

however, they show that storage systems based on encapsulated PCM had lower capital cost, lower 

levelized cost of electricity (LCOE), higher exergetic efficiency, and higher capacity factor then 
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optimized systems using heat pipes [35]. It is important to note, however, that there study was 

based on an initial study using paraffin wax as the PCM, and they make no mention of materials / 

fluid selection in light of the higher temperature nitrate salt PCM considered in their work.  

Whatever strategy is employed with extended surfaces, it is important to be mindful of the 

impact extended surfaces for conductive transfer may have on convective transfer. It has been 

pointed out in the design of fins for improved heat transfer that there is typically an optimum point 

that balances the increased surface area for heat transfer with the decreased degree of natural 

convection caused by the addition (number / size) of fins [34]. Owing to the nature of phase 

change, this is a necessary optimization analysis that must be performed on a case-by-case basis. 

2.4.2 Encapsulation 

As mentioned above, one can think about encapsulation in terms of micro-encapsulation 

or macro-encapsulation [22]. Most of the work on micro-encapsulation pertains only to lower 

temperature PCM materials; hence, it will not be addressed here. From this point forward, macro-

encapsulation shall be referred to simply as encapsulation. 

There are clear advantages to an encapsulated PCM storage unit, including more effective 

heat transfer (due to increased heat transfer area), potential for greater exergetic efficiency (i.e., in 

a cascaded PCM arrangement), and reduced tankage cost (may require only a single tank) [13]. 

Unfortunately, comparatively little work has been done concerning encapsulation of higher 

temperature PCM materials of interest for concentrating solar power applications. Some numerical 

work has been done, however, and it is described here. 

Shiina and Inagaki performed a numeral study on the thermal conductivity and melting 

characteristics of a variety of PCM materials, including lithium carbonate and NaCl [50]. 

However, this study focused on inclusion of high conductivity matrices for increase in thermal 
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conductivity, and little attention is given to encapsulation. Zhao et al performed a similar numerical 

analysis of encapsulated PCM [51]. For the eutectic of NaCl and magnesium chloride considered 

in this study, nickel and stainless steel (pre-formed) shells were deemed necessary. They also point 

out the likely need for unconventional HTFs for such high temperature PCM materials (𝑇𝑇𝑚𝑚 = 

444°C). 

2.4.3 High Conductivity Additives / Matrices 

Many studies have been undertaken on high conductivity particles / matrices incorporated 

within lower temperature PCM materials, including organics (e.g., paraffin) and salt hydrates, such 

as that by Velraj [37]. For a description of some of these works, the reader is referred to the review 

by Jegaheeswaran and Pohekar [34].  

Tamme et al extended the concept of graphite dispersions in paraffin to the KNO3-NaNO3 

eutectic salt PCM [43]. Among different methods of preparation examined, they demonstrated a 

nearly one order of magnitude increase in thermal conductivity using a graphite weight fraction of 

only 0.05. Further study demonstrated substantial improvement in conductivity of both this 

eutectic salt and a eutectic mixture of KNO3 and lithium nitrate using either of two methods of 

preparation: infiltration of a graphite matrix by molten salt, and compaction of a mixture of dry 

PCM and expanded graphite flakes [52]. It was demonstrated, however, that the compacted 

graphite-PCM mixtures showed varied conductivity upon thermal cycling. Pincemin’s work shows 

similar behavior for mixtures of graphite of various morphologies in nitrate salts [32, 53]. Also, 

Acem et al describe a similar compaction technique, and describe the measured thermophysical 

properties of composites with KNO3-NaNO3 with concentrations of graphite between 15 and 20 

wt % [54]. 
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Of primary importance in the design of these additive-salt systems is the adequacy of 

additive dispersion. Fukai et al discuss the impact of orientation of carbon nanostructures (in this 

case, fibers), and a very dramatic decrease in heat transfer rate can be observed for such anisotropic 

systems, depending on the geometry of heat transfer [36, 55]. Also, there is tradeoff involved in 

using higher conductivity particles for improved heat transfer. As elucidated by Siegel, in the 

process of solidification, the increase in conduction provided by the particles is coupled with a 

decrease in volume occupied by the PCM (and hence, an increase the distance over which heat 

must traverse) [56]. Hence, for reasonable concentrations (20% by volume), addition of particles 

may only yield a removal rate (for plane geometry) of 10-20%. However, extrapolated over an 

entire heat storage unit, and over the life of the unit, this improvement would nonetheless be 

appreciable. 

While a number of studies have examined the use of metallic nanoparticles (see, for 

example, Zeng et al [57]), these materials have not been examined with higher temperature 

anhydrous salt based PCM materials, likely because of the propensity for oxidative degradation. 

Indeed, this is a concern for carbon-based materials, as well [41]. In a study by Sure et al, it is 

shown that graphite has a relatively low resistance to corrosion by chloride salts, although glassy 

carbon and pyrolytic graphite show improved resistance [58]. 

To conclude, the use of this strategy requires maintenance of additive dispersion, 

appropriate balance of the concentration to avoid excessive loss of PCM volume, and appropriate 

material selection to prevent degradation of the additive. 

2.4.4 Radiative Heat Transfer Enhancement 

The objective of radiative transfer enhancement in PCM materials is to incorporate infrared 

absorptive additives in an otherwise semi-transparent PCM. Hence, depending on the 
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concentration of the additive, a varying degree of infrared radiation will pass through the PCM, 

being absorbed and transferring heat in the process. In order for this concept to work, temperatures 

must be sufficient to render radiation an important mode of heat transfer—as a rough rule, greater 

than 600°C. Because there is a relative lack of research on this concept, a brief description of 

relevant scientific principles follows. 

Potential PCMs falling within this range include NaCl (phase transition at 800.7°C) and 

the eutectic of potassium chloride (KCl) and NaCl (phase transition at 658°C) [19, 59].  These 

materials are known to be transparent in much of the infrared [60]. While the focus here is on these 

two salt systems, the concept could theoretically be extended to other semi-transparent salts (e.g., 

other chlorides, fluorides, and their eutectics). 

In analyzing the radiative properties of the PCMs and potential absorptive media in 

question, it was necessary to determine a spectral range of interest.  It is evident from Planck’s 

distribution law [61], 

 𝑒𝑒𝑏𝑏𝑏𝑏 =
2𝜋𝜋𝑐𝑐2ℎ
𝜆𝜆5

1
𝑒𝑒𝑐𝑐ℎ/𝑏𝑏𝜆𝜆𝑇𝑇  − 1

 (2.2) 

that approximately 90 percent of blackbody emissive power falls within the region of 2.0 to 13.0 

µm at the melting point of the eutectic salt (𝑇𝑇𝑚𝑚 = 658°C); this is depicted graphically in Figure 15. 

Similarly, approximately 93% of blackbody emissive power falls within the range of 0.5 to 10 µm 

at the melting point of pure NaCl (𝑇𝑇𝑚𝑚 = 800.7°C); this is depicted graphically in Figure 16. Both 

these salt systems are largely transparent in these regions. The implication, of course, is that 90% 

or more of the total emissive power of an ideally black container would pass through the container-

PCM interface, attenuating as it transfers heat further into the medium than would be possible by 

conduction alone over a finite amount of time.  
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For real (i.e., non-ideal) containment materials, the situation is more complex. In Figure 

17, for example, the normal spectral emissivity for alumina at 600°C and two different purities is 

plotted, using data taken from [62]. The normal spectral emissivity can be defined as [61] 

 𝜖𝜖𝑏𝑏(𝜃𝜃 = 0,𝑇𝑇) =
𝐼𝐼𝑏𝑏(𝜃𝜃 = 0,𝑇𝑇)
𝐼𝐼𝑏𝑏𝑏𝑏(𝑇𝑇)

 (2.3) 

In other words, the normal spectral emissivity is the ratio of actual emitted radiant intensity normal 

to the surface to that emitted by a blackbody (the blackbody radiative emittance is, by definition, 

isotropic). From the behavior shown in Figure 17, it is clear that ideal blackbody emittance (as 

demonstrated in Figure 15 and Figure 16) will be somewhat higher than the actual emittance in a 

real application with alumina as the containment material; additionally, the departure from ideality 

will be greater (i.e., emittance will be less) at shorter wavelengths (< 5 µm, approximately). This 

characteristic is verified by independent measurements of two crucible materials, porcelain and 

alumina, which are shown in Figure 18. Here, normal total emissivity is plotted versus temperature 

over the range of 400°C to 700°C. Measurements were made with a Jasco FTIR-6300 spectrometer 

with emission accessory and MCT detector. The emittance of the sample was compared to a 

blackbody reference manufactured by Infrared Systems Development Corporation of Winter Park, 

Florida. The normal total emissivity is generally defined as [61] 

 𝜖𝜖(𝜃𝜃 = 0,𝑇𝑇) =
∫ 𝐼𝐼𝑏𝑏(𝜃𝜃 = 0,𝑇𝑇)𝑑𝑑𝜆𝜆∞
0

∫ 𝐼𝐼𝑏𝑏𝑏𝑏(𝑇𝑇)𝑑𝑑𝜆𝜆∞
0

=
𝐼𝐼(𝜃𝜃 = 0,𝑇𝑇)

𝜎𝜎𝑇𝑇4
 (2.4) 

However, given the limited range of the detector (approximately 2 to 16 µm), the normal total 

emissivity was calculated as 

 𝜖𝜖𝑒𝑒𝑓𝑓𝑓𝑓(𝜃𝜃 = 0,𝑇𝑇) =
∫ 𝐼𝐼𝑏𝑏(𝜃𝜃 = 0,𝑇𝑇)𝑑𝑑𝜆𝜆𝑏𝑏2
𝑏𝑏1

∫ 𝐼𝐼𝑏𝑏𝑏𝑏(𝑇𝑇)𝑑𝑑𝜆𝜆𝑏𝑏2
𝑏𝑏1

 (2.5) 
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where 𝜆𝜆1 and 𝜆𝜆2 are the upper and lower bounds, respectively, of the detector, and the subscript 

“eff” is used to denote this quantity as an “effective” emissivity. As temperature increases, the 

blackbody curve shifts its peak and with it a larger portion of its emissive power to shorter 

wavelengths. Because these ceramic material have lower spectral emissivity at these wavelengths, 

their total emissivity decreases as the temperature increases. It should be noted that the 

hemispherical emissivity—that is, the directional emissivity integrated over all directions 

emanating from the container surface—is a more relevant measure for our purposes, although for 

nonmetallic surfaces the normal emissivity is a close approximation of this quantity [63]. The 

radiative properties of potential containment materials will not be explored in great detail here; for 

further information the reader is referred to relevant data compilations [62, 64-68]. 

This study shall focus on the radiative properties of the TES materials themselves. The data 

available in the literature concerning the radiative properties of potential storage materials are often 

incomplete, in the sense that alternatively spectral emissivity, reflectivity, and transmissivity are 

measured with varied experimental methodologies [60].  To maintain a consistent basis of 

comparison, this review attempts to quantify the radiative properties of potential candidate 

materials using their hemispherical spectral quantities (i.e., directionality is neglected where 

possible).  Further, for the sake of simplicity, any such data gleaned from the literature is converted 

where possible to a hemispherical total value, using a weighted integral.  This integral for 

hemispherical total emissivity would typically be evaluated as follows [61]. 

 𝜖𝜖(𝑇𝑇) =
∫ 𝜖𝜖𝑏𝑏(𝜆𝜆,𝑇𝑇)𝑒𝑒𝑏𝑏𝑏𝑏(𝜆𝜆,𝑇𝑇)𝑑𝑑𝜆𝜆∞
0

∫ 𝑒𝑒𝑏𝑏𝑏𝑏(𝜆𝜆,𝑇𝑇)𝑑𝑑𝜆𝜆∞
0

=
∫ 𝜖𝜖𝑏𝑏(𝜆𝜆,𝑇𝑇)𝑒𝑒𝑏𝑏𝑏𝑏(𝜆𝜆,𝑇𝑇)𝑑𝑑𝜆𝜆∞
0

𝜎𝜎𝑇𝑇4
 (2.6) 

 Here, the second equality is a direct result of the Stefan-Boltzmann law.  Unfortunately, data over 

the entire effective spectral range is rarely available.  In these cases, this integral must be evaluated 

as follows, again in the case of emissivity. 
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 𝜖𝜖𝑒𝑒𝑓𝑓𝑓𝑓(𝑇𝑇) =
∫ 𝜖𝜖𝑏𝑏(𝜆𝜆,𝑇𝑇)𝑒𝑒𝑏𝑏𝑏𝑏(𝜆𝜆,𝑇𝑇)𝑑𝑑𝜆𝜆𝑏𝑏2
𝑏𝑏1

∫ 𝑒𝑒𝑏𝑏𝑏𝑏(𝜆𝜆,𝑇𝑇)𝑑𝑑𝜆𝜆𝑏𝑏2
𝑏𝑏1

 (2.7) 

The nomenclature “effective total emissivity” is used to emphasize the narrower spectral range of 

integration.  In the ideal case, this range is the 0.5 to 20 microns range of interest described above; 

the range may be narrower depending upon the availability of applicable data. Additionally, it 

should be noted that due to the discrete nature of radiative property measurements considered here, 

the numerator of the effective total emissivity expression above must be evaluated using 

polynomial interpolation and quadrature.  The denominator, on the other hand, can be more 

precisely calculated, owing to the well-defined Planck distribution. 

The available solid-state thermal radiative properties were compiled from Touloukian and 

DeWitt [60].  Unfortunately, radiative data in the temperature range of interest (600 – 1000°C) 

were not available.  The majority of the effective emissivity, reflectivity, and transmissivity data 

tabulated below were obtained from measurements taken at approximate room temperature 

(298K), with the following exceptions.  The effective emissivity data for potassium bromide (KBr) 

and rubidium bromide (RbBr) were measured at 373K.  The remaining data for rubidium bromide 

were measured at 313K.  The effective emissivity data for NaCl and KCl were measured at 373K.  

All data for rubidium chloride (RbCl) and rubidium iodide (RbI) were measured at 313K. 

The above data hold for the solid-state thermal radiative properties of the salts in question.  

Additional research concerning the thermal radiative properties of molten alkali metal (lithium, 

sodium, and potassium) chlorides [69] and carbonates [70] has been conducted. It was 

demonstrated that while a substantial semi-transparent region existed for lithium chloride 

(wavelengths of approximately 0.5 microns to 8 microns), both NaCl and KCl were nearly 

completely transparent.  
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Appropriately selected nanoparticles or fibers of solid additives will control transmittance 

by their manner of dispersion in the PCM.  Additives will be dispersed within the bulk PCM by 

one of four methods: controlled amounts of dissolved materials, suspended (insoluble) additive 

particles of similar density to the molten PCM, a fibrous matrix distributed across the PCM pellet, 

or absorptive foam which is impregnated by molten PCM.  In the third case, the similarity in 

densities is necessary so as to allow natural convection to maintain an adequate dispersion of the 

additive particles.  Suspended additives should have densities similar to the molten PCM to 

minimize precipitation, as well. Potential additives of interest will be discussed in the final chapter. 

At this point it is prudent to consider the prior work on this topic. As stated previously, not 

much work has been done on the inclusion of infrared absorptive particles / materials within 

infrared transparent PCM thermal storage media, but some has been done in increasing solar 

availability of such materials—that is, adding particles to enhance the absorption of the media in 

the ultraviolet, visible, and near infrared spectral regions. The motivation behind such work is to 

render these materials as better HTFs for direct absorption of solar radiation in a solar absorber. 

Arai proposed what he called a “volume heat-trap” solar collector; the heat transfer 

mechanism is illustrated in Figure 19 [71]. The collector used a liquid diethylphthalate suspension 

of fine particles of various types: graphite, carborundum, and silicon dioxide [71]. In this case, the 

particles were not nano-sized, but rather sieved to a range of 5 µm or less. Perhaps more relevant 

to our focus here on inorganic salts, the work of Drotning demonstrated the potential for transition 

metal oxides—namely cupric oxide (CuO) and cobaltic oxide (Co3O4)—to increase solar 

absorption in the molten eutectic of sodium nitrite, sodium nitrate, and potassium nitrate (wt % 

40:7:53) [72]. In both these studies, the emphasis was placed on absorption of solar radiation, 
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which is predominately in the ultraviolet, visible, and near infrared, according to Planck’s 

distribution [61].   

To extend the concept to the infrared radiation characteristic of the high temperature 

thermal storage units considered here, information about potential additives’ infrared absorption 

characteristics is needed. Indeed, such data for many of the materials considered here are currently 

available [73]. Perhaps more robustly, independent measurement of these quantities (i.e., 

absorption coefficient, emissivity) should be performed, using transmission, reflection, and / or 

emission spectroscopy in the infrared. 

2.5 Conclusions and Investigative Focus 

For direct conductivity enhancement, this research will focus on the nitrate salts currently 

widely in use in many solar power plants, either as HTFs or thermal storage media [25].  Three 

salts are considered: sodium nitrate (NaNO3), potassium nitrate (KNO3), and the KNO3-NaNO3 

eutectic, with melting points of approximately 334, 306, and 222°C, respectively [27]. While these 

materials, especially the eutectic salt, may find great applicability as HTFs, the primary focus of 

this research will be upon their value as PCMs. This latter scenario holds the added benefit of 

much higher storage density, owing to the outsized latent heat capacity of molten salts relative to 

their sensible heat capacity over the range of practicable operating temperatures. For the second 

part of this research, thermal radiative transfer enhancement, the chloride salts identified 

previously will be used: NaCl and the KCl-NaCl eutectic, with melting points of approximately 

800.7 and 658°C, respectively [19, 59]. Both KCl and NaCl are listed in Table 2 with other higher 

temperature PCM candidates and relevant thermophysical properties data. It can be seen that they 

compare favorably with many of the other candidates in terms of latent heat of fusion. For example, 

as can be seen from Figure 20, many lithium compounds are seen to have higher latent heat values, 
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but they are also correspondingly more expensive, with lithium carbonate more than double the 

cost KCl, quadruple the cost of NaCl on a per kWhth basis [74]. The eutectic, KCl-NaCl, has 

somewhat lower latent heat [31]. Nonetheless, because it makes use of relatively inexpensive 

components, and because it has a melting temperature intermediate to NaCl and many of the lower 

temperature nitrate salts currently in use, it will be selected for further study here. 

 

 

Figure 6 Thermochemical heat storage process [11].  
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Figure 7 A potential configuration of inorganic salts used as sensible storage media [25].  

 

 

Figure 8 Generalized phase-transitions for a hypothetical pure substance.  
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Figure 9 Packed-bed TES unit arrangement [15].  

 

 

Figure 10 Cylindrical shell TES unit arrangement, tube-side PCM [9].  

 

Figure 11 Cylindrical TES unit, PCM shell-side [12].  
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Figure 12 Common fin arrangements in latent heat storage systems [17].  

 

 

Figure 13 Schematic of heat pipe-enhanced storage unit with tube-side HTF [47].  

 

Figure 14 HTF flow configuration for heat-pipe enhanced storage units. Tube-side HTF is shown 
in (a) and tube-side PCM is shown in (b).  
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Figure 15 Blackbody radiation at 658°C. 90% of total emissive power is generated within the 
shaded region.  

 

Figure 16 Blackbody radiation at 800.7°C. 93% of total emissive power is generated within the 
shaded region.  
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Figure 17 Normal spectral emissivity of alumina at 600°C. Two different concentrations are 
shown: 99% and 85%. Data taken from [62]. 

 

Figure 18 Normal total emissivity for porcelain and alumina.  
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Figure 19 Heat transfer in a volume heat-trap collector, as articulated by Arai [71].  

 

 

Figure 20 Cost per kWhth latent heat of various PCM materials, circa 2005 [74].   
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Table 1 Selected radiative properties of potential PCM materials 

Name Tm (°C) εeff ρeff τeff 
Bromides         

KBr 734 0.04 - 0.9 
RbBr 692 0.05 0.057 0.91 
CsBr 636 - 0.08 0.8 
MgBr2 711 - 0.08 - 
Carbonates         
Na2CO3 856 - 0.45 - 
BaCO3 811 - 0.99 - 
Chlorides         
NaCl 800.7 0.08 0.03 0.92 
KCl 771 0.03 0.03 0.9 
RbCl 724 - 0.053 0.94 
Fluorides         
LiF 848.2 - 0.3 0.9 
NaF 996 - 0.02 0.9 
Iodides         
KI 681 - - 0.85 
RbI 656 - - 0.8 
CsI 632 - 0.09 0.86 
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Table 2 Thermophysical properties of inorganic salt PCMs 

Name Tm (°C) 
ΔHfus 

(kJ/kg) ρs (g/mL) ρl (g/mL) 
Capacity 

(kWhth/m3) 
Bromides           
NaBr 747 256 3.200 2.342 167 
KBr 734 212 2.74 2.127 125 
RbBr 692 141 3.35 2.715 106 
CsBr 636 111 4.43 3.133 97 
MgBr2 711 213 3.72 2.62 155 
CaBr2 742 146 3.38 3.111 126 
SrBr2 657 42.4 4.216 3.70 44 
BaBr2 857 108 4.781 3.991 120 
Carbonates           
Li2CO3 732 606 2.11 1.80 303 
Na2CO3 856 280 2.54 1.972 153 
K2CO3 899 200 2.29 1.89 105 
Rb2CO3 873 130 - 2.84 103 
Cs2CO3 793 95 4.24 - 112 
MgCO3 990 700 3.010 - 585 
BaCO3 811 200 4.308 - 239 
Chlorides           
LiCl 610 467 2.07 1.502 195 
NaCl 800.7 482 2.17 1.556 208 
KCl 771 353 1.988 1.527 150 
RbCl 724 202 2.76 2.248 126 
CsCl 646 121 3.988 2.79 94 
MgCl2 714 453 2.325 1.68 211 
CaCl2 775 252.7 2.15 2.085 146 
SrCl2 874 102.3 3.052 2.727 77 
BaCl2 961 76.12 3.9 3.174 67 
Chromates           
Na2CrO4 794 152 2.72 - 115 
K2CrO4 974 170 2.73 - 129 
Cs2CrO4 963 92 4.24 - 108 
Fluorides           
LiF 848.2 1044 2.64 1.81 525 
NaF 996 794 2.78 1.948 430 
KF 858 468 2.48 1.91 248 
RbF 795 247 3.2 2.87 197 
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Table 2 (Continued) 

Name Tm (°C) 
ΔHfus 

(kJ/kg) ρs (g/mL) ρl (g/mL) 
Capacity 

(kWhth/m3) 
CsF 703 143 4.64 3.649 145 
Iodides           
NaI 661 158 3.67 2.742 120 
KI 681 145 3.12 2.448 99 
RbI 656 104 3.55 2.904 84 
CsI 632 99 4.51 3.197 88 
MgI2 634 93 4.43 3.05 79 
CaI2 783 142 3.96 3.443 136 
BaI2 711 67.8 5.15 4.26 80 
Molybdates           
Li2MoO4 702 281 2.66 - 208 
Na2MoO4 687 109 3.28 2.72848 83 
K2MoO4 919 163 2.34 2.343184 106 
Rb2MoO4 958 140 - - - 
Cs2MoO4 956.3 75 - - - 
Sulfates           
Li2SO4 860 82 2.21 2.003 46 
Na2SO4 884 168 2.7 2.069 97 
Tungstates           
Li2WO4 740 157 3.71 - 162 
Na2WO4 695 107 4.18 3.679985 109 
K2WO4 921 86 3.12 3.11784 74 
Rb2WO4 952 78 - - - 
Cs2WO4 953 63 - - - 
Others           
MoO3 802 338 4.7 - 441 
NaCl50-KCl50 658 280 2.0776 1.588 124 
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CHAPTER 3 DIRECT CONDUCTIVITY ENHANCEMENT4 

3.1 Introduction 

Perhaps the most direct route to improving the thermal conductivity and therefore the 

performance of TES media is via the inclusion of higher conductivity materials. In this chapter we 

examine this concept in greater detail, specifically via the addition of various high conductivity 

particles in the following nitrate salts: NaNO3, KNO3, and the NaNO3-KNO3 eutectic system. 

Relevant thermophysical properties of these materials are presented in Table 3, taken from the 

thermodynamic database software FactSage [27], unless otherwise noted. 

To begin, the abovementioned nitrate salts are mixed with approximately 2.0% volume 

cupric oxide, CuO, nanoparticles. The thermophysical properties of this additive material are 

discussed, as are those of other potential oxide-based additives. The properties of the nanoparticle-

enhanced salts are measured and compared with those of the pure salts. Also, temperature-variant 

IR spectroscopy is used to verify that the additives do not facilitate the degradation of the salts. 

Next, we give a brief treatment of dispersion properties of additive materials in these salts. 

Whereas as some research has shown that some transition metal oxides form stable suspensions in 

nitrate salts [76], our efforts showed some difficulty in maintaining the suspension at the 

concentrations necessary to achieve an appreciable increase in thermal conductivity. 

Finally, in response to some of the issues raised concerning additive dispersions, graphene 

is examined as a potential conductivity enhancing additive. Although graphene is more expensive 

                                                 
4 Section 3.2 has been submitted to Applied Energy for publication [75].  
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than the metal oxides considered here, it was found that a comparatively small mass of graphene 

nanoflakes led to a significantly higher increase in thermal conductivity, relative to the CuO 

nanoparticles. 

3.2 CuO Nanoparticle-Enhanced Nitrate Salt TES Media  

In this section, experimental investigations of CuO-nanoparticle enhanced nitrate salt TES 

media are discussed. The first consideration in selecting CuO as the conductivity-enhancing 

additive is, of course, the additive’s thermal conductivity. CuO has also been reported to have a 

much higher thermal conductivity (76.5 W/m-K) than the salts studied here [77]. While there is a 

lack of data on the solid-state thermal conductivity of these salts, it has been found sodium nitrate, 

for example, that the thermal conductivity is less than 1 W/m-K for the temperature range of room 

temperature to the melting point [78]. Further, through examination of a separate study involving 

conductivity enhancement in borosilicate glass, it was found that addition of CuO resulted in the 

greatest conductivity increase per concentration by weight of any of several transition metal oxides 

studied [79]. As a note of caution, one would not expect a close equivalence of the borosilicate 

glass and the crystalline nitrate salts, although under certain conditions nitrate salts can form 

glasses [80].  

In Table 4, relevant thermophysical properties of CuO and other potential oxide-based 

additives are compared. Density and specific heat data are taken from FactSage [27]. Thermal 

conductivity data, where available, are taken from the compilation of Touloukian and coworkers 

[81], unless otherwise noted. It should be recognized that all data reported here are for the bulk 

material. Heat transfer for particles whose dimensions are on the order of the mean free path is 

potentially reduced, due to localized heating effects [82]. Nonetheless, the bulk properties are a 

good starting point with which to judge potential additive materials. 
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The quantity in the last heading of Table 4, 𝜌𝜌𝑐𝑐𝑝𝑝, can be conceptualized a volume-based 

heat capacity. The importance of this quantity is seen in the definition of the thermal diffusivity: 

 𝛼𝛼 =  
𝑘𝑘
𝜌𝜌𝑐𝑐𝑝𝑝

 (3.1) 

The flow of heat in a one-dimensional problem depends on both the conductivity (according to 

Fourier’s law, how quickly heat will flow in a given direction) and the heat capacity (how much 

heat will be absorbed by a given spatial element). So, in the effort to increase heat flow in the pure 

TES media, it is generally desirable to have high thermal conductivity and low heat capacity in the 

additive material. Of course, if the heat capacity of the additive is lower than that of the pure salt, 

some sensible heat capacity of the storage media is lost, and due to the fact that the additive 

presumably will not participate in the salt’s phase change, latent heat capacity is also lost. In either 

case, this loss should be proportional to the concentration of the additive, although, in working 

with nanomaterials, the bulk material properties may not be a good predictor of the loss [83]. The 

bulk thermal diffusivity of materials for which data were available is plotted in Figure 21. It is 

clear from the limited data available that CuO is the most promising of the candidate oxide 

additives considered based on potential heat transfer enhancement. 

Another important consideration in selection of the additive material is thermochemical 

stability. Whereas prior studies have examined graphite and aluminum as potential conductivity 

enhancing additives for salt TES media, corrosion was found to be an issue. Graphite-salt 

composites prepared by Pincemin et al, for example, were shown to steadily decrease in melting 

endotherm peak upon initial cycling, stabilizing after at least 40 cycles [32]. It is quite possible 

that this change behavior is the result of degradation of a small proportion of the nitrate to the 

nitrite salt [76, 84], which would shorten and stretch the endothermic peak. CuO, owing to its high 
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oxidation state, is expected to remain stable in a mixture with the salt, preventing degradation of 

the nanoparticle or the nitrate (i.e., to a nitrite).  

The remainder of this section summarizes efforts into investigating the CuO nanoparticle-

enhanced nitrate salts systems. First, diffusivity data are presented. Using properties obtained from 

the literature, the thermal conductivity of these systems is also calculated. Next, measured 

thermophysical properties of the systems are summarized. Finally, the stability of the nanoparticle-

salt systems is demonstrated through spectroscopic methods. 

3.2.1 Methodology 

CuO nanoparticles (spherical, approximately 40 nm; obtained from SkySpring 

Nanomaterials) were added to each salt in a volume ratio (solid state) of approximately 0.02. This 

particular volume fraction was chosen based on prior studies of lower temperature nanofluids, 

which showed demonstrable increases in thermal conductivity with this concentration of CuO [85].  

This volume fraction translates to weight fractions of approximately 0.058, 0.054, and 0.056 for 

the KNO3, NaNO3, and eutectic salt, respectively. 

The thermal diffusivity of the pure salts and additive-salt mixtures was measured using 

laser flash analysis (LFA). The samples were prepared by first melting the salt at approximately 

20C above its melting point, then grinding the solidified material in a ball mill, and finally pressing 

the material in a hydraulic press. To minimize moisture infiltration, milled material was kept in a 

drying oven prior to pressing; samples were pressed under vacuum under force of approximately 

18,000 lb (the limit of the sample die). The resultant samples were cylindrical in shape, 

approximately 1.3 mm thick with diameter of 13.0 mm. The thermal diffusivity was measured with 

a Linseis XFA500 LFA instrument. The instrument is calibrated with a graphite standard to a stated 

accuracy of ± 6% [86].   
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The technique behind the measurement was introduced by Parker and coworkers and has 

become a widely used technique for determining the thermal diffusivity of homogeneous materials 

based on the flash method [87, 88]. The instrument uses a laser to deliver a radiant energy pulse 

to heat one surface of the sample; the temperature of the opposite side is measured, and the 

diffusivity is calculated by the transient temperature response [89]. Parker’s formula was 

implemented to calculate thermal diffusivity as follows. 

 𝛼𝛼 =  
0.1388 𝑑𝑑2

𝑡𝑡0.5
 (3.2) 

Here, 𝛼𝛼 is the thermal diffusivity in cm2/s, 𝑑𝑑 is the sample thickness in cm, and 𝑡𝑡0.5 is the time 

taken in seconds to reach approximately half the maximum temperature [86]. Using this equation, 

thermal diffusivity can be calculated over a wide range of temperatures. Because we are primarily 

concerned with the solid phase thermal conductivity (i.e., because it largely determines the 

solidification time of the PCMs), we will restrict our attention to temperatures below the melting 

points of the pure nitrate salts: 223, 306.5, and 334°C for the eutectic salt, NaNO3, and KNO3, 

respectively. 

Differential scanning calorimetry (DSC) measurements were performed with a TA 

Instruments SDT Q600 Simultaneous DSC / Thermogravimetric Analyzer (TGA). The DSC 

temperature signal was calibrated to tin (𝑇𝑇𝑚𝑚 = 231.93°C) and zinc (𝑇𝑇𝑚𝑚 = 419.53°C) calibration 

standards. The heat flow calibration was performed with a sapphire calibrant with known specific 

heat capacity. Platinum crucibles were selected for the measurement based on their high 

conductivity and resistance to attack by nitrate salts. Samples were prepared then dried prior to 

measurement; TGA measurements indicated negligible weight lost, suggesting moisture did not 

significantly impact the calorimetric measurements. All measurements were run under dry 

nitrogen at a flow rate of approximately 100 ml/min. Approximately 5 mg samples were used, and 
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three to five runs were performed for each salt / salt composite system studied. The melting point 

of the samples was assessed as the extrapolated onset of the melting endotherm [90].  The enthalpy 

change on melting was determined by integrating the corresponding endothermic peak using the 

extrapolated baseline [91]. 

Temperature variant FTIR measurements of the pure salt and salt composite systems were 

made using a Jasco FTIR-6900 spectrometer with a diffuse reflectance accessory provided by Pike 

Instruments. The diffuse reflectance accessory was equipped with a heating element and 

thermocouple to control the sample temperature. The spectrometer utilized a mercury-cadmium-

telluride (MCT) detector, and while it is able to achieve spectrometric data at wave numbers as 

high as approximately 8000 cm-1, measurements were limited to the range of 4000 to 600 cm-1 

after preliminary measurements indicated negligible infrared activity at higher wave numbers.  

Samples were prepared by dispersion in KBr at approximately 1.0 wt %, followed by 

homogenization in agate mortar. The samples were placed in a porous ceramic cup, which allowed 

purge gas (dry nitrogen, approximately 100 ml/min) to continually pass through the sample. The 

sample and heating element were encased under a zinc selenide (ZnSe) window, and all spectra 

were obtained relative to pure KBr baseline samples at the relevant measurement temperature. 

The spectra of KNO3 and NaNO3 are well known [92]. FTIR spectroscopy can be used to 

determine degradation of the salt by analyzing IR spectra for the presence of nitrite peaks, as the 

nitrite would be a product of the nitrate degradation reaction. In the case of KNO3, the presence of 

nitrite can be determined by peaks at 2560, 1335, or 1235 cm-1. In the case of NaNO3, the presence 

of nitrite can be determined by 1335 or 1250 cm-1. In the case of the eutectic salt, the presence of 

nitrite can be determined by a peak at 1335 cm-1 or potentially by any of the peaks of the pure 

nitrite salts listed above. 
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All spectrophotometric measurements were performed on the nitrate salt systems both prior 

to and after melting. To melt the salts, approximately 10 g of each were heated in a muffle furnace 

to a temperature approximately 20°C higher than the presumed melting point, then dwelled 

isothermally for approximately 2 hr.  

3.2.2 Results and Discussion 

Scanning electron microscope (SEM) images of the post melting salt-CuO composites are 

shown in Figures 22 – 24. The SEM images suggest that some agglomerates on the order of 100-

300 nm in size were present. It is possible that the agglomerates formed via natural convection 

currents in the liquid phase of the salt; however, the nanoparticles were found to maintain their 

distribution in the salt after melting, as judged by visual inspection (i.e., salt appears 

homogeneous).   

The diffusivity measurements comparing the pure and additive enhanced salt systems are 

plotted in Figures 25 – 27.  For reference, the solid phase transitions for both KNO3 (130°C) and 

the eutectic (109°C) are indicated by a horizontal dashed line [27]; these transition temperatures 

were verified by DSC measurement of the pure salts.  Note that diffusivity measurements were not 

made above the solid-solid transition temperature of NaNO3, 276°C [93].    

The eutectic system displays the greatest improvement in thermal diffusivity upon addition 

of CuO nanoparticles, and it also is the only system that shows statistically significant (i.e., greater 

than two standard deviations) improvement over the entire temperature range considered. KNO3 

showed the next highest improvement, and the increase in diffusivity was generally statistically 

significant, with exception to the highest temperature data point (i.e., 300°C). NaNO3 showed the 

lowest relative increase in thermal diffusivity, and the increase was statistically significant only 
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for temperature below 150°C. Statistical significance has been judged by the error bars on the data, 

which represent plus / minus one standard deviation from each measured diffusivity value.  

In an effort to clarify the behavior observed in the thermal diffusivity measurements, an 

effort was made to estimate the thermal conductivity of the systems based on these measurements 

and known property values. The thermodynamic properties of the pure salts have been extensively 

studied;  for the sake of simplicity, such data for these salts—namely, values for density and 

specific heat as a function of temperature—were all obtained from the thermodynamic property 

database software FACTSage [27]. To calculate the density of the composite systems, the 

following formula was used. 

 𝜌𝜌𝑐𝑐𝑐𝑐𝑚𝑚𝑝𝑝𝑐𝑐𝑠𝑠𝑐𝑐𝑐𝑐𝑒𝑒 = 𝑓𝑓𝑣𝑣,𝐶𝐶𝑓𝑓𝐶𝐶𝜌𝜌𝐶𝐶𝑓𝑓𝐶𝐶 + �1 − 𝑓𝑓𝑣𝑣,𝐶𝐶𝑓𝑓𝐶𝐶�𝜌𝜌𝑠𝑠𝑠𝑠𝑙𝑙𝑐𝑐 (3.3) 

The specific heat of the composite material was calculated using a volume-weighted average of 

the component heat capacities [94]. 

 𝑐𝑐𝑝𝑝,𝑐𝑐𝑐𝑐𝑚𝑚𝑝𝑝𝑐𝑐𝑠𝑠𝑐𝑐𝑐𝑐𝑒𝑒 =
𝑓𝑓𝑣𝑣,𝐶𝐶𝑓𝑓𝐶𝐶𝜌𝜌𝐶𝐶𝑓𝑓𝐶𝐶𝑐𝑐𝑝𝑝,𝐶𝐶𝑓𝑓𝐶𝐶 + �1 − 𝑓𝑓𝑣𝑣,𝐶𝐶𝑓𝑓𝐶𝐶�𝜌𝜌𝑠𝑠𝑠𝑠𝑙𝑙𝑐𝑐𝑐𝑐𝑝𝑝,𝑠𝑠𝑠𝑠𝑙𝑙𝑐𝑐

𝜌𝜌𝑐𝑐𝑐𝑐𝑚𝑚𝑝𝑝𝑐𝑐𝑠𝑠𝑐𝑐𝑐𝑐𝑒𝑒
 (3.4) 

Short of rigorous measurement, these calculations provide an estimate of the change in thermal 

conductivity in the composite salt systems relative to the pure salts. 

The results of the thermal conductivity estimation are plotted Figures 28 – 30. The behavior 

is similar to that displayed in the diffusivity measurements. All the salts show an increase in 

thermal conductivity with addition of the CuO nanoparticles. The eutectic system shows the 

greatest improvement, and NaNO3 shows the least improvement. The increase in the NaNO3-CuO 

system is only statistically significant for temperatures below 150°C. In this case, however, all the 

data points considered for KNO3 show a statistically significant increase in conductivity. It should 

be noted that the errors displayed here do not account for any potential error in Equations (3.3) 

and (3.4).   
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Thermophysical properties measured by DSC are shown in Table 5. The data measured for 

this study agree well with the literature values shown in Table 3, with possible exception to the 

melting point of the pure eutectic salt. The measured melting point of the eutectic system was 

approximately 221°C, whereas the reported value was 223°C. Moreover, the measured properties 

of the CuO-nitrate salt mixtures closely agree with those of the pure salts. A slight but not 

statistically significant decrease in temperature is noted in each salt upon addition of the additive; 

this may be an indication of solubility. In regard to the enthalpy of fusion, one would expect some 

decrease in the latent heat upon addition of the additives if they did not participate in the phase 

change, and this decrease would be directly proportional to the additive concentration; however, 

within the error of the measurement, the latent heat of the additive-salt mixtures is approximately 

the same as that of the pure salts.   

In an effort to assess the stability of the molten salt systems, spectrophotometric 

measurements were made of CuO nanoparticle-enhanced salts both prior to and after melting.  The 

results of the FTIR studies are shown in Figures 31 – 33. The FTIR measurements were taken at 

three different temperatures for each salt: 150, 200, and 215°C for the eutectic salt, and 200, 250, 

and 300°C for both KNO3 and NaNO3. The pre-melt salt mixture is shown in the left column, (a), 

while the post-melt salt mixture is shown in the right column, (b). 

In each case, the intensity of the IR signal decreased with temperature, so the lowest curves 

represent the highest temperatures. In general it is clear that the infrared spectra vary little with 

temperature, and appear to change little after melting. None of the characteristic peaks for nitrites 

(see: 3.2.1 Methodology) are visible before or after melting. There are some differences between 

the pre-melt and post-melt spectra for the eutectic salt; this is likely due to the eutectic salt forming 

a new macroscale structure (e.g., lamellar) after the first melting and solidification.  
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3.2.3 Conclusions 

The improvements in diffusivity and conductivity are clearly demonstrated for the 

inclusion of small amounts (2% by volume) CuO nanoparticles in nitrate salts. In all 

measurements, CuO was shown to increase the thermal diffusivity and thermal conductivity, 

although in some cases the increase was not significant, given the error of the measurement. 

Statistically significant increases in thermal diffusivity were measured over there entire 

temperature range of study for the eutectic salt system; significant increases in diffusivity for 

KNO3-CuO were observed for temperature below 300°C; and significant increases in diffusivity 

for NaNO3-CuO were observed for temperatures below 150°C. Statistically significant increases 

in thermal conductivity were observed for both the eutectic salt and pure KNO3 systems over the 

entire temperature range of study; significant increases in conductivity for NaNO3 were observed 

only for temperatures under 150°C. It should be noted, however, that the calculation of thermal 

conductivity involved estimates of the systems’ density and specific heat capacity that were not 

verified by independent measurement. 

Additionally, the systems’ were shown to not degrade under thermal cycling, as 

demonstrated by FTIR studies of the materials before and after melting. No peaks characteristic of 

nitrite, the decomposition product of the nitrate salts, were observed after melting. 

There are multiple areas in which additional research should be pursued.  These include: 

• Study of the thermophysical properties of the composite salt systems in the molten 

state.  These would be of much more relevance to the use of the systems as HTFs. 

• Dispersion studies of the nanoparticles within the salt matrices. 

• Better characterization of the behavior of CuO within the salt matrix. 
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Nonetheless, this additive shows promise in that relatively small amounts (2% by volume) 

yield significant increases in thermal diffusivity and appear to remain chemically stable. 

3.3 Additive Dispersion 

A determining factor in the maintenance of a dispersion of nanoparticles in a liquid medium 

(e.g., a molten salt) is the tendency toward sedimentation. As the PCM undergoes phase change to 

a liquid state, care must be taken to ensure the particles do not aggregate and settle to the bottom. 

A method of estimating the potential for particle settling is to employ the methods used for Stokes 

fluid flow, also known as creeping flow [95]. In this approximation, the settling velocity of the 

particles is assumed to be sufficiently slow (Re < 0.1) so as to preclude the formation of eddies 

downstream of the settling particles. Balancing the gravitational force with the buoyancy force and 

the viscous force, we obtain the following relation for terminal sedimentation velocity. 

 𝑣𝑣𝑐𝑐 =
2
9
𝑟𝑟2Δ𝜌𝜌𝜌𝜌
𝜇𝜇

 (3.5) 

If we arbitrarily take a settling distance of 2 cm, we can calculate a settling time for the 

nanoparticles.  Taking the example of CuO nanoparticles (40 nm in diameter) in sodium nitrate, a 

settling time of approximately 6 months is obtained. Aggregation is seen to be a major problem. 

If the particles aggregate to some degree, resulting in a modest effective diameter increase of 

400nm, the settling time becomes approximately 10 hours.  

 In Figure 34, a bisected pellet of NaNO3 and NiO nanoparticles (<50 nm) is shown, 

following 5 thermal cycles (i.e., melting and solidification). The concentration of nanoparticles in 

the pellet was approximately 2 wt %. It can be seen that the nanoparticles have accumulated at the 

bottom of the pellet. It is likely that some degree of aggregation has occurred prior to the settling 

of the particles; this may have been exacerbated by natural convection currents and the process of 

phase separation during solidification. 
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 It seems worthwhile to investigate other ways to ensure additive dispersion. Examining 

Equation (3.5), we see that the settling time can be increased by decreasing the quantity ∆𝜌𝜌—that 

is, by using less dense nanoparticles. As has been mentioned previously, graphite has been 

investigated as a potential conductivity enhancing additive [32]. Below, a preliminary study of 

another carbonaceous material, graphene, is described. 

3.4 Graphene Nanoflakes for Conductivity Enhancement 

Previous work shows some promise for CuO nanoparticles for conductivity enhancement, 

although the increase in conductivity in NaNO3 was not shown to be as dramatic as in the other 

nitrate salts. Furthermore, because CuO has a relatively high density, there is some concern about 

the ability of the salt-CuO mixture to maintain adequate dispersion of the nanoparticles. In this 

section, we discuss some preliminary work with graphene nanoflakes, which have a lower density 

and higher conductivity than the CuO nanoparticles.  

In Figure 35, the thermal diffusivity of approximately 2.0 wt % graphene-NaNO3 mixtures 

is plotted with the diffusivity of the pure salt. Increased diffusivity is shown, but it is only 

statistically significant for the room temperature data point. With only a 1.0 wt % increase, 

however, to 3.0 wt % graphene, there is significant improvement, as shown in Figure 36. 
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Figure 21 Thermal diffusivity of potential conductivity enhancing additives. Density and heat 
capacity data taken from FactSage [27]; thermal conductivity data taken from other sources [77, 
81].  

  

Figure 22 SEM image of eutectic salt with CuO nanoparticles.  
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Figure 23 SEM image of KNO3 with CuO nanoparticles. 

 

Figure 24 SEM image of NaNO3 with CuO nanoparticles.  
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Figure 25 Thermal diffusivity of pure nitrate eutectic salt and eutectic-CuO system.  

 

Figure 26 Thermal diffusivity of pure KNO3 and KNO3-CuO system.  
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Figure 27 Thermal diffusivity of pure NaNO3 and NaNO3-CuO system. 

 

Figure 28 Thermal conductivity of pure nitrate eutectic salt and eutectic-CuO system.  
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Figure 29 Thermal conductivity of pure KNO3 and KNO3-CuO system.  

 

Figure 30 Thermal conductivity of pure NaNO3 and NaNO3-CuO system.  
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(a) 

 
(b) 

Figure 31 IR spectra of eutectic salt with CuO nanoparticles. Measurements made before (a) and 
after (b) melting.   

 
(a) 

 
(b) 

Figure 32 IR spectra of KNO3 with CuO nanoparticles. Measurements made before (a) and after 
(b) melting.  

 
(a) 

 
(b) 

Figure 33 IR spectra of NaNO3 with CuO nanoparticles. Measurements made before (a) and after 
(b) melting.  



www.manaraa.com

 

59 
 

 

Figure 34 Bisected pellet containing sodium nitrate and 2 wt % NiO nanoparticles. The NiO is 
seen as the black material at the bottom of the pellet.  

 

Figure 35 Thermal diffusivity of pure NaNO3 and 2.0 wt % NaNO3-graphene system.  
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Figure 36 Thermal diffusivity of pure NaNO3 and 3.0 wt % NaNO3-graphene system.  
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Table 3 Thermophysical properties of nitrate eutectic salt and constituents. 𝑇𝑇 = 200°C and 𝑇𝑇 = 250°C correspond to solid and liquid 
phases, respectively. Data are taken from FactSage [27], unless otherwise noted.  

Salt 
Mole % 

(KNO3:NaNO3) Tm (°C) ΔHfus (J/g) 
cp (J/g-K) Density (g/ml) 

T = 200°C T = 250°C T = 200°C T = 250°C 
KNO3 100:0 334 [59] 95 [59] 1.19 2.11 
NaNO3 0:100 306.5 [59] 182 [59] 1.56 1.69 2.26 
(K,Na)NO3 51.8:48.2 223.01 125.8 1.35 1.41 2.18 1.94 

 

Table 4 Thermophyiscal properties of potential additives. Thermal conductivity data are taken from [81], unless otherwise noted. All 
other data are taken from FactSage [27], unless otherwise noted.  

Additive 

k (W/m-K) Density (g/cm3) cp (J/g-K) ρcp (J/cm3-K) 

T = 25°C 223°C 
306.5°

C 334°C 
T = 

223°C 306.5°C 334°C 
T = 

223°C 306.5°C 334°C 
T = 

223°C 306.5°C 334°C 

Al2O3 36.3 20.4 16.7 15.6 3.97 3.96 3.96 1.09 1.14 1.16 4.32 4.54 4.59 
CoO - 6.45 0.72 0.72 0.72 4.66 4.66 4.66 
CuO 76.5 [77] - 6.40 0.62 0.64 0.64 3.96 4.07 4.11 
Fe2O3 - 5.24 5.23 5.22 0.82 0.86 0.87 4.29 4.50 4.57 
NiO 41 10.5 8.6 8.0 6.67 0.85 0.69 0.69 5.69 4.61 4.64 
SiO2 8.3 5.0 4.3 4.1 2.63 2.62 2.62 0.99 1.06 1.08 2.59 2.77 2.82 
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Table 5 Thermophysical properties of pure nitrate salts and nitrate-CuO mixtures. Properties 
were measured by DSC.  

Salt Tm (°C) ΔHfus (J/g) 
(K,Na)NO3 220.52 ± 0.04 124 ± 3 
(K,Na)NO3 + CuO 220.35 ± 0.03 120 ± 6 
KNO3 334.48 ± 0.02 91 ± 6 
KNO3 + CuO 333.90 ± 0.06 87 ± 2 
NaNO3 306.21 ± 0.03 186 ± 4 
NaNO3 + CuO 306.14 ± 0.05 186 ± 4 
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CHAPTER 4 CHLORIDE SALTS FOR THERMAL ENERGY STORAGE5 

4.1 Introduction 

Increased implementation of renewable energy technologies and, in particular, the next 

generation of concentrating solar power (CSP) plants require the development of new means to 

ensure these technologies provide consistent and reliable power generation.  It is expected that the 

next generation of CSP plants will allow for higher operating temperatures and correspondingly 

increased operating efficiencies. In recent years central receivers for the solar power tower 

configuration produced working fluid temperatures in excess of 950°C [97]. The central receiver 

design is limited in operating temperature by material constraints, but it is generally regarded that 

gaseous fluids (e.g., air) can be reliably heated to 800 – 1100°C [98]. Also crucial to the 

development of such plants are advanced TES systems capable of meeting nighttime loads and 

improving general dispatchability. Higher operating temperatures and thermal storage strategies 

are crucial to allowing CSP technologies to achieve the goals put forth by the U.S. Department of 

Energy Sunshot Initiative—namely, levelized cost of electricity (LCOE) of $0.06/kWh or less 

[20].  

This paper investigates a group of materials, chloride salts, that hold great potential for use 

in the next generation of CSP plants. Inorganic salts in general are well suited to address both the 

higher operating temperature needs of solar power towers and the attendant need for TES, as they 

can be used as HTFs and/or thermal storage media in advanced high-temperature CSP plants [99, 

                                                 
5 This chapter has been submitted to the Journal of Solar Energy Engineering for publication [96]. 



www.manaraa.com

 

64 
 

100]. In current plants, however, only nitrate-based salts have been utilized, either as the working 

fluid in the central receiver or as molten salt sensible heat storage media (i.e., dual tank storage) 

[25, 101]. At the lower temperatures of their current use, nitrate salts possess favorable 

thermophysical properties, low vapor pressure, and comparatively low cost [26]. They are, 

however, limited in their application to temperatures below 600°C, and thus would be 

inappropriate as working fluids or TES media for central receivers operating at higher temperatures 

[102]. Many chloride salts, however, are stable at these higher temperatures, and tend to have low 

vapor pressure up to 801°C [103]. 

This paper examines a set of chloride salts and their mixtures particularly relevant to high 

temperature (>400°C) applications for solar power tower plants—as a working fluid, as sensible 

TES, or as latent heat thermal energy storage (LHTES). A preliminary screening of pure chloride 

salts based on available literature yields a list of promising candidate salts. Eutectic mixtures of 

these salts are also considered; the eutectic systems were modeled using the thermodynamic 

database software, FactSage [27]. Thermophysical properties, such as melting point, latent heat, 

etc., are summarized for each salt system. Given the higher temperatures of operation considered 

here, data for the radiative properties of these materials are also presented. Candidate containment 

materials and strategies are discussed, along with the attendant potential for corrosion. Last, cost 

data for these systems are used to assess the most promising storage media for individual 

applications. 

4.2 Background 

TES is especially important in power generation, and has a primary advantage over 

technologies such as mechanical (e.g., compressed air storage) or chemical (e.g., batteries) in that 

it generally entails lower capital cost [11, 12]. Further, for solar thermal power plants, TES is 
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preferable over other storage technologies because it allows for a smaller turbogenerator with less 

part-time operation [98]. Here, we briefly describe some of the general aspects of TES. More 

information on the technological details on solar power plants can be found in the review by Barlev 

et al [14]; extensive review of the importance and practical design concerns of TES in CSP plants 

can be found in the work by Kuravi et al [12]. 

TES can generally be divided into three distinct categories: sensible heat, latent heat, and 

thermochemical energy [104]. Sensible heat is perhaps the most familiar; it stores thermal energy 

by heating a mass of material of constant phase (e.g., solid, liquid, or vapor) from a lower 

temperature to a higher temperature, and its quantification requires knowledge of the material’s 

specific heat capacity, which itself may vary with temperature. Latent heat, on the other hand, 

stems from a phase change and corresponding change in the enthalpy of the storage medium. In 

this way latent heat storage makes use of PCMs and has the potential to offer great improvements 

over sensible heat storage alone, due to the typically large quantities of energy required for phase 

change and the ability to store and deliver heat at a consistent temperature (i.e., the phase-change 

temperature) [15]. Thermochemical storage is very promising because of its potential for 

significant energy storage capacity (mass basis) [13]; however, it faces a number of technical 

challenges, and it will not be discussed in this paper. 

This study examines a particular class of inorganic salts, chloride salts, for use in TES-

equipped solar power generation. Inorganic salts have already found widespread use as storage 

media in a sensible heat storage arrangement. Molten salts in utility scale storage systems—the 

two-tank storage system design—are well-established [24]. Indeed, multiple power plants soon to 

come online will make use of this storage strategy, including the Crescent Dunes project in 

Tonopah, Nevada [13]. In this way, inorganic salts are very promising as high-temperature heat 
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transfer fluids and sensible thermal storage media in solar thermal power production. It is also 

important to note that these materials are characterized by high heats of fusion, so their use as 

PCMs in LHTES arrangements allows for substantially higher energy storage density than their 

use as sensible heat storage alone.  

The operating temperature is a crucial factor in determining the potential upper-limit 

efficiency of a thermal power plant’s power cycle, as well as the exergetic efficiency of any TES 

system meant to support the plant [13]. Higher operating temperatures and thermal storage 

strategies are therefore crucial to allowing CSP technologies to achieve the goals put forth by the 

U.S. Department of Energy Sunshot Initiative—namely, LCOE of $0.06/kWh or less [20]. 

Chloride salts are promising materials to meet the higher operating temperature needs of the next 

generation of CSP plants, mainly because they tend to have higher melting temperatures—NaCl, 

for instance, melts at 800.7°C [59]. Moreover, many chloride salts are comparatively inexpensive. 

The review conducted by Hoshi et al, for instance, shows chloride salts in general to be less 

expensive per kWh latent heat than corresponding nitrates, fluorides, hydroxides, carbonates [74]. 

To conduct a meaningful review and screening of potential chloride salt systems for 

application in solar power plants, there is a need for both cost and thermophysical properties data. 

Data for pure component melting points and latent heat of fusion are available in the CRC 

Handbook of Chemistry and Physics [59]. Other pure component thermophysical properties, 

including thermal conductivity, specific heat capacity, and radiative properties, can be found in 

the compilations of Touloukian et al [67, 81, 105]. A number of reviews have been conducted 

addressing the properties of inorganic salts as PCMs [8, 23, 74]. These reviews include relevant 

properties such as melting point, latent heat of fusion, and eutectic composition for select salt 

systems. As far as molten salt properties are concerned, the work of Janz et al provides much useful 
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information [84, 106-108]. Phase equilibria data (relevant for mixtures of the salts considered here) 

are found in numerous works undertaken to analyze and consolidate phase equilibrium diagrams 

[109-111]; particularly noteworthy is the CD-ROM database compiled by the American Ceramic 

Society and the U.S. National Institute of Standards and Technology [112]. 

In the process of screening potential salts based on estimated cost and sufficiently high 

melting temperature (>400C°), it became clear that, when considering mixtures of these materials, 

systems of interest would include mixtures with little thermophysical properties data immediately 

available in the literature. As such, the thermophysical properties database software, FactSage, 

was used to model the eutectic salt mixtures considered here [113, 114]. FactSage 6.4 was used 

with the database FTSalt to model the binary eutectic systems of the pure salts obtained from the 

first screening. Most of the eutectic systems considered here have been “optimized” by the 

software developers—that is, they have been closely correlated to experimental phase equilibria 

data from various literature sources. FTSalt contains data on all the pure salts except the chlorides 

of copper (CuCl, CuCl2). If a binary salt system was shown to have no congruently melting eutectic 

composition (e.g., a monotectic system such as MgCl2-MnCl2), then that system was excluded 

from further consideration. Such a salt, while inappropriate for LHTES, may be used in the molten 

state as a working fluid or sensible heat storage medium, however. 

4.3 Pure Salt Screening Process 

There are, of course, numerous chlorides which may be considered as TES media. The 

general categories into which these materials fall are chlorides of alkali metals, alkaline earth 

metals, transition metals, p-block metals, and rare earth metals. For the purposes of this study, we 

limit ourselves to salts of higher melting temperatures—that is, greater than 400°C (ferric chloride, 

FeCl3, for instance, would be neglected, as its melting temperature is 306°C). When combined in 
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eutectic mixtures, the resulting salt systems may melt at temperatures lower than 400°C; it is 

anticipated that these materials may still find use at elevated temperature as fused salt sensible 

storage media (i.e., as “solar salt,” the eutectic of KNO3 and NaNO3, is used currently for dual 

tank storage in solar power plants [25]). Moreover, many of the pure salts considered exhibited 

costs well in excess of those of the preponderance of the other candidate salts (for example, 

chlorides of rare earth metals); as such, salts with costs on the order of $1000/kg or more were also 

excluded during this preliminary screening. 

The results of this screening are shown in Table 6. The melting temperatures and enthalpy 

change of fusion for these substances were obtained from the same reference data compilation 

[59]; further, they were cross-referenced with other databases to assure validity (e.g., [110, 113, 

115]). Costs were obtained by taking the lowest “bulk” price among the aggregate vendors on the 

chemical identification and supply website, SciFinder [116]. Prices reflect quotes obtained over 

the approximate period of October – December 2014. A variety of different purities were available, 

so prices for purities less than 95% were excluded from consideration (lower purity salts would 

give less reliable thermophysical properties, not the least of which would be melting temperature). 

It is worthwhile to note here that, even at purities of 95% and greater, impurities in the “as-

received” salts may hinder the long-term performance of the TES unit utilizing these materials. As 

such, it may be necessary to pretreat the as received salts to remove or precipitate impurities prior 

to implementation [103]. For example, it was necessary to thermally treat the “solar salt” (KNO3-

NaNO3 eutectic) working fluid in order to eliminate Mg(NO3)2 impurities at the Solar Two molten 

salt power tower installation [101]. 

The latent heat of these pure materials is plotted with respect to their costs in Figure 37. 

From this depiction, one can discern a distinct region of high latent heat / low cost materials that 
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would be ideal as storage media for LHTES. Materials with greater cost and lower latent heat 

would not be recommended for this purpose. In between, there are materials of less certain 

applicability—either relatively inexpensive but low in latent heat (e.g., BaCl2), or high in latent 

heat but also expensive (e.g., CoCl2). Any of the materials shown in this figure (or mixtures 

thereof) may find use as fused salt sensible heat storage media, depending on other thermophysical 

properties (melting temperature, density, specific heat, etc.) and their chemical stability.  

The melting point, latent heat, and cost data for the pure salts obtained from the screening 

process are listed in Table 6, along with cost data obtained from the various vendors. Two types 

of costs are presented. The first, on a mass basis, is more appropriate for materials meant to be 

applied as either a working fluid or a molten salt-based sensible heat storage medium. For LHTES 

media, however, it is more appropriate to cost the materials based on the amount of energy they 

are capable of absorbing during phase change. Hence, the second cost column gives the cost per-

kJ latent heat.  

Next, we consider the binary eutectic mixtures of the pure salts listed in Table 6. As 

described in the prior section, the FactSage database, FTSalt has data on all the pure salts except 

the chlorides of copper (CuCl, CuCl2). Data for systems involving these salts must be obtained 

directly from the literature. The binary systems of the remaining salts, however, were successfully 

modeled using the software, which yielded the appropriate eutectic composition and the melting 

point for each system. The binary eutectic mixtures of these salts are listed in Table 7, along with 

relevant thermophysical properties. As with the pure salts, the latent heat of fusion is a desired 

quantity to aid in the selection of LHTES storage media. To that end, the latent heat of fusion was 

estimated based on entropy additivity of its pure component salts [117]. This approximation can 

be articulated as follows [98]. 
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 ∆𝐻𝐻𝑓𝑓𝑓𝑓𝑠𝑠 = 𝑇𝑇𝑚𝑚�
𝑥𝑥𝑐𝑐∆𝐻𝐻𝑓𝑓𝑓𝑓𝑠𝑠,𝑐𝑐

𝑇𝑇𝑚𝑚,𝑐𝑐𝑐𝑐

 (4.1) 

While approximate, this equation can allow for direct comparison among all the individual salt 

mixtures, for many of whom direct latent heat data are unavailable. These approximate values for 

latent heat of the mixtures are also presented in Table 7. As with the pure salts, two costs are listed: 

one with a mass basis (more appropriate for working fluid or sensible heat storage application), 

and the other with a latent heat basis (more appropriate for latent heat storage application). 

4.4 Radiative Properties 

 The chloride salt systems studied in the paper are particularly useful for TES at higher 

temperatures. At sufficiently high temperature, radiative transfer becomes a major mode of heat 

transfer. For the temperatures considered here (approximately 1000°C or less), the bulk of this 

radiation is in the infrared. Moreover, if the molten salt is to be employed as the absorbing fluid in 

the receiver, information regarding its radiative properties in the ultraviolet and visible regions of 

the spectrum would be important for modeling solar absorption. 

Radiative properties data, unfortunately, are not available for every system considered 

here. Data for selected pure chloride salts are obtained from the thermophysical properties 

compilation of Touloukian et al [67]; they are presented in Figure 38. Specifically, the normal 

spectral transmittance (measured at room temperature) is presented for CuCl, KCl, NaCl, and 

PbCl2. The samples in these cases were single, polished crystals; in practice, these materials will 

likely experience additional attenuation due to impurities, fractures, grain boundaries, etc. Also, 

since the measurements were made at room temperature, one can expect the near- to mid- infrared 

absorption to rise with temperature, especially if lattice defects or dopants are present within the 

crystal [118]. Nonetheless, we gain a general picture of these materials’ properties from the plotted 

normal spectral transmittance. The chloride salt data shown with the radiative properties of ionic 
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crystals, having one or more absorption bands  in the mid- to far- infrared (Reststrahlen absorption) 

and several absorption bands near the ultraviolet (electronic excitation), as described by the 

Lorentz model [118]. 

4.5 Containment Materials / Methods 

High temperature chlorides may require non-metallic containment, as most metals would 

be prone to corrosion in the presence of these materials and even small quantities of oxygen and/or 

moisture. One could justifiably predict that ceramic materials would be necessary for these uses, 

and in this case the importance of radiative transfer is amplified, for two reasons. On the one hand, 

ceramics are significantly less conductive than metals; on the other, metals tend to be less emissive 

than ceramics.  

High temperature conditions (>400°C), cyclic thermal stress, and corrosive TES media 

present a unique challenge to the material selection process. Corrosion is a major consideration at 

these temperatures. Nickel-based alloys are frequently employed in corrosive applications. 

Various studies discuss the role of specialty alloys for corrosive applications. Vignarooban et al 

reported corrosion rates for various Hastealloys in NaCl-KCl-ZnCl2 molten salt mixtures up to 

500°C [119]. However, containment materials must not only protect against corrosion, but must 

also be cost-effective. While some nickel alloys may withstand these corrosive conditions, their 

selection is hindered by their high costs (4 times as high as stainless steel alloys [13]). Hence, steel 

or steel-based alloys could prove to be important contributors towards containment of the chloride-

based TES systems.  

It has been found that certain elements like Cr and Ni are conducive to improving corrosion 

resistance of low carbon microalloying steel [120]. Moreover, corrosion rates increase with 

increasing temperatures [121]. Hiramatsu et al. presented the effects of alloying elements of 
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stainless steels on NaCl induced corrosion in a temperature range of 450°C to 750°C. Austenitic 

stainless steels displayed better results than ferritic stainless steels [121]. SEM/EDXA analysis 

was conducted by Lehmusto et al to study the effect of solid KCl on superheater steels at elevated 

temperatures [122]. Nickel-based alloy 625-type steel was found to be more durable in terms of 

corrosion resistance as compared to ferritic 10CrMo-type steel. In case of the alloy 625 type steel, 

the thick oxide layer predominantly comprised of nickel oxide in the presence of KCl. 

Furthermore, a comprehensive analysis of various Fe-Cr-Ni alloys was conducted by Evans et al 

[123]. This study concluded that diffusion of Cr ions in the Cr2O3 scale was the rate controlling 

step in the temperature range of 700°C to 1100°C. The role of chlorides in hot corrosion of high 

alloy stainless steels was studied by Mohanty et al [124]. The authors concluded that thermal 

cycling, when superimposed on hot corrosion, caused spallation of the oxide layer while cooling.  

Corrosion protection afforded by various protective coatings has also been evaluated in 

various studies. Shankar et al compared the performance of yttria-stabilized zirconia coating on 

316L SS with respect to uncoated 316L SS [125]. The testing was carried out at elevated 

temperatures of 600°C and the coating was found to be instrumental in providing improved 

corrosion resistance. Uusitalo et al discussed results of experimental studies of boiler steels and 

protective coatings at high temperatures [126]. The coatings evaluated were high velocity oxy-fuel 

(HVOF) coatings, laser cladding, and diffusion chromized steel. In addition, two boiler steels were 

also analyzed. The performance of nickel-based high chromium coatings was found to be 

satisfactory.  

In addition to developing new alloys and protective coatings, other techniques employed 

to improve the corrosion resistance of cost effective stainless steel based alloys include shot 

peening, cladding and internal insulation approach [13]. Shot peening is employed to change the 
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grain size and the structure of the alloy at the surface to improve its corrosion resistance. Smaller 

grain size provides a larger surface area for formation of passivating layers [127].  

Cladding is a method bonding thin protective layers to a substrate through roll welding, 

explosive welding or laser application. Internal insulation approach employs thermally insulating 

refractory bricks as internal liner to the storage tank. Inexpensive insulation materials make this 

an economically attractive option. This approach has been employed in coal gasification industries 

[128]. 

4.6 Cost Comparison 

In Figure 39, the cost per kg of the binary salt eutectic mixtures is plotted against melting 

temperature. The systems are labeled with their numbers as listed in Table 7. Also included for 

reference are cost data for the nitrate salts, NaNO3 and KNO3, which are now commonly used for 

sensible storage media. From this plot, it is clear which systems are preferable in terms of cost at 

each temperature of interest; in general, the systems involving the chlorides of sodium, potassium, 

and magnesium tend to be less expensive, as well as some systems involving chlorides of barium 

and calcium. In Figure 40, the cost per kJ latent heat (estimated) is plotted against melting 

temperature for the same binary systems (again, numbered as in Table 7). While the grouping of 

materials is qualitatively similar to that shown in Figure 39, differences that arise are illustrative 

of the different selection process required for latent heat media as opposed to that required for 

sensible heat media. For instance, it can be seen in Figure 40 that systems 2 and 3 (different eutectic 

compositions of BaCl2-CsCl) become relatively more expensive when judged on the basis of their 

heat storage capacity, which is to be expected owing to the relatively low latent heat of these 

systems. Last, we present all the chloride salt systems (pure or eutectic) that fall below $0.20 per 

kJ latent heat (Figure 41). These materials show most promise as PCMs in a LHTES arrangement. 
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It is clear from the plot that there are a wealth of salt systems which can cover the range of 

approximately 400 – 800°C (e.g., in a cascade latent heat storage system [28]). Based on this 

observation, it seems that more expensive salts (e.g., fluorides) or metals may be needed for latent 

heat storage media at higher temperatures; alternatively, sensible heat storage could be explored. 

As an illustration of the information that can be gleaned from these charts, consider a 

cascaded latent heat system designed to heat a working fluid from 400 to 540°C. Consulting Figure 

41, we see that the 43  44  6  7 cascade—that is, two eutectic mixtures of KCl-MgCl2, 

followed by BaCl2-LiCl and BaCl2-MgCl2—provides a suitable configuration with an approximate 

20°C approach or greater and approximately 50°C separation between each PCM melting point. 

4.7 Conclusions / Future Work 

Inorganic salts are promising as TES media to increase dispatchability and capacity factor 

of CSP plants. Nitrate salts especially have found widespread use in this context. Chloride salts, 

however, have received less attention. This paper proposes various chloride salt systems for use in 

high temperature (>400°C) solar power plants, either as working fluid, sensible heat storage media, 

or latent heat storage media (i.e., PCMs). A group of 17 pure chloride salts was obtained from a 

preliminary screening process based on cost and melting temperature. An additional 64 systems, 

taken from the binary eutectic systems of the pure salts, were modeled using the thermodynamic 

database software, FactSage. Thermophysical properties, taken from the FactSage model and other 

literature sources, are presented for each of the salt systems. A cost comparison was performed for 

the systems in application as sensible heat storage media or latent heat storage media. 

Lack of measured properties data for many of these systems is a distinct challenge, and 

future work is planned to address this problem. Also, potential downsides of some of these 

materials (containment compatibility, long-term thermal stability) need to be studied in greater 



www.manaraa.com

 

75 
 

detail. Nonetheless, it is expected that chloride salts in general can find use in high temperature 

TES applications in the near future. 

 

Figure 37 Latent heat plotted against cost for pure chloride salts 

.  
Figure 38 Normal spectral transmittance for select pure chloride salts. Data were taken from 
Touloukian [67].  
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Figure 39 Cost per kg (e.g., sensible storage application) of chloride salt systems. Systems are 
presented as numbered in Table 7.  
 

 
Figure 40 Cost per kJ (e.g., latent storage application) of chloride salt systems. Systems are 
presented as numbered in Table 7.  
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Figure 41 Pure salts and eutectics under $0.2 (USD) per kJ latent heat.  
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Table 6 Pure salts obtained from preliminary screening process 

  
Tm (°C) ΔHfus 

(kJ/kg) 
Cost 

(USD/kg) 
Cost 

(USD/kJ) 

Alkali metal          
LiCl 610 467 $34 $0.07 
KCl 771 353 $9.80 $0.03 
NaCl 800.7 482 $4.76 $0.01 
CsCl 646 121 $145 $1.20 
Alkaline earth metal        
MgCl2 714 453 $8.00 $0.02 
CaCl2 775 253 $12.38 $0.05 
SrCl2 874 102 $55.65 $0.54 
BaCl2 961 76 $12.00 $0.16 
Transition metal        
CrCl3 827 379 $56.25 $0.15 
MnCl2 650 244 $23.23 $0.10 
FeCl2 677 338 $63.20 $0.19 
CoCl2 737 354 $75.80 $0.21 
NiCl2 1031 595 $26.69 $0.04 
CuCl2 598 112 $78 $0.70 
CuCl 423 71 $67.80 $0.95 
CdCl2 589 265 $340 $1.28 
Other         
PbCl2 501 79 $15.19 $0.19 

 

Table 7 Thermophysical properties and cost data for the binary eutectic mixtures 

    
xA xB Tm (°C) 

ΔHfus 

(approximate) 
(kJ/kg) 

Cost 
(USD/kg) 

Cost 
(USD/kJ) 

No. Eutectic mixture (A-B)           
1 BaCl2-CaCl2 0.359 0.641 608 131 $12.18 $0.09 
2 BaCl2-CsCl 0.181 0.819 589 101 $116.45 $1.16 
3 BaCl2-CsCl 0.358 0.642 585 89 $90.71 $1.02 
4 BaCl2-KCl 0.445 0.555 649 135 $11.32 $0.08 
5 BaCl2-KCl 0.272 0.728 646 181 $10.92 $0.06 
6 BaCl2-LiCl 0.249 0.751 514 188 $20.37 $0.11 
7 BaCl2-MgCl2 0.429 0.571 559 176 $10.49 $0.06 
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Table 7 (Continued) 

    
xA xB Tm (°C) 

ΔHfus 

(approximate) 
(kJ/kg) 

Cost 
(USD/kg) 

Cost 
(USD/kJ) 

No. Eutectic mixture (A-B)           
8 BaCl2-NaCl 0.399 0.601 651 163 $9.85 $0.06 
9 BaCl2-SrCl2 0.27 0.73 849 90 $41.38 $0.46 

10 CaCl2-CoCl2 0.538 0.462 613 262 $44.16 $0.17 
11 CaCl2-CsCl 0.091 0.909 599 121 $136.79 $1.13 
12 CaCl2-CsCl 0.854 0.146 707 214 $39.69 $0.19 
13 CaCl2-FeCl2 0.444 0.556 589 266 $42.29 $0.16 
14 CaCl2-KCl 0.74 0.26 641 237 $11.88 $0.05 
15 CaCl2-KCl 0.25 0.75 600 267 $10.66 $0.04 
16 CaCl2-LiCl 0.35 0.65 475 270 $21.35 $0.08 
17 CaCl2-MgCl2 0.474 0.526 617 309 $52.16 $0.17 
18 CaCl2-MnCl2 0.374 0.626 587 220 $19.49 $0.09 
19 CaCl2-NaCl 0.521 0.479 584 265 $9.89 $0.04 
20 CaCl2-NiCl2 0.852 0.148 719 275 $14.79 $0.05 
21 CaCl2-PbCl2 0.178 0.822 471 84 $14.97 $0.18 
22 CaCl2-SrCl2 0.584 0.416 662 154 $34.20 $0.22 
23 CoCl2-KCl 0.428 0.572 345 213 $47.14 $0.22 
24 CoCl2-KCl 0.296 0.704 418 237 $37.70 $0.16 
25 CoCl2-LiCl 0.389 0.611 517 325 $61.63 $0.19 
26 CoCl2-MgCl2 0.298 0.702 709 412 $32.86 $0.08 
27 CoCl2-NaCl 0.373 0.627 366 251 $45.20 $0.18 
28 CsCl-KCl 0.625 0.375 616 156 $116.62 $0.75 
29 CsCl-LiCl 0.42 0.58 326 140 $65.02 $0.46 
30 CsCl-MgCl2 0.807 0.193 491 130 $67.72 $0.52 
31 CsCl-MgCl2 0.726 0.274 518 150 $63.87 $0.43 
32 CsCl-MgCl2 0.626 0.374 526 171 $58.68 $0.34 
33 CsCl-MgCl2 0.316 0.684 554 258 $38.48 $0.15 
34 CsCl-NaCl 0.65 0.35 486 138 $64.61 $0.47 
35 CsCl-SrCl2 0.856 0.144 560 105 $73.04 $0.70 
36 CsCl-SrCl2 0.22 0.78 718 98 $60.29 $0.61 
37 FeCl2-KCl 0.54 0.46 392 233 $45.38 $0.20 
38 FeCl2-KCl 0.389 0.611 350 216 $37.56 $0.17 
39 FeCl2-LiCl 0.467 0.533 523 321 $55.13 $0.17 
40 FeCl2-NaCl 0.44 0.56 377 254 $71.12 $0.28 
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Table 7 (Continued) 

    
xA xB Tm (°C) 

ΔHfus 

(approximate) 
(kJ/kg) 

Cost 
(USD/kg) 

Cost 
(USD/kJ) 

No. Eutectic mixture (A-B)           
41 KCl-LiCl 0.408 0.592 353 266 $20.74 $0.08 
42 KCl-MgCl2 0.698 0.302 423 265 $9.16 $0.03 
43 KCl-MgCl2 0.653 0.347 429 271 $9.07 $0.03 
44 KCl-MgCl2 0.416 0.584 473 310 $8.65 $0.03 
45 KCl-MnCl2 0.67 0.33 416 210 $15.90 $0.08 
46 KCl-MnCl2 0.37 0.63 456 206 $19.77 $0.10 
47 KCl-NaCl 0.494 0.506 657 360 $7.56 $0.02 
48 KCl-NiCl2 0.73 0.27 513 302 $16.41 $0.05 
49 KCl-PbCl2 0.48 0.52 407 101 $14.12 $0.14 
50 KCl-PbCl2 0.22 0.78 418 82 $14.81 $0.18 
51 KCl-SrCl2 0.706 0.294 593 191 $31.33 $0.16 
52 KCl-SrCl2 0.573 0.427 584 159 $37.91 $0.24 
53 LiCl-MgCl2 0.71 0.29 571 418 $21.56 $0.05 
54 LiCl-MnCl2 0.74 0.26 574 334 $28.50 $0.09 
55 LiCl-MnCl2 0.44 0.56 537 259 $25.49 $0.10 
56 LiCl-NaCl 0.72 0.28 554 414 $59.37 $0.14 
57 LiCl-SrCl2 0.643 0.357 492 178 $48.61 $0.27 
58 MgCl2-NaCl 0.431 0.569 459 333 $6.55 $0.02 
59 MgCl2-NiCl2 0.869 0.131 692 442 $11.18 $0.03 
60 MgCl2-SrCl2 0.462 0.538 535 174 $39.44 $0.23 
61 MnCl2-NaCl 0.456 0.544 425 230 $16.65 $0.07 
62 NaCl-NiCl2 0.697 0.303 573 383 $15.52 $0.04 
63 NaCl-PbCl2 0.29 0.71 408 88 $14.37 $0.16 
64 NaCl-SrCl2 0.484 0.516 565 152 $42.57 $0.28 
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CHAPTER 5 RADIATIVE ENHANCEMENT IN CHLORIDE SALTS6 

5.1 Introduction 

 Molten inorganic salts hold a great deal of promise as high-temperature heat transfer fluids 

and thermal storage media in renewable energy applications, and they have found use in nuclear 

and solar thermal power [25, 130]. In solar energy conversion, the most widespread use has been 

made of the nitrate salts—namely, the eutectic of potassium nitrate (KNO3) and sodium nitrate 

(NaNO3), commonly known as “solar salt.” This nitrate eutectic has been used in a variety of 

parabolic trough- and central receiver- type solar thermal facilities as the storage medium in a two-

tank TES configuration [12, 25]. 

The next generation of solar thermal plants will likely need higher melting materials for 

their thermal storage systems. Receivers for use in the solar power tower arrangement have reached 

temperatures as high as 750, 812, and even 950°C [97, 131, 132]. At these elevated temperatures, 

salts such as sodium chloride (NaCl), potassium chloride (KCl), and the eutectic (minimum 

melting) mixture of the two salts [(K-Na)Cl] present themselves as nearly ideal storage media 

candidates, owing to comparatively low cost, high heats of fusion, and melting temperatures in the 

range of interest (for NaCl, 800.7°C, for KCl, 770.9°C, and for the eutectic, 657°C; see Table 8).  

It is likely that, as central receivers in the power tower arrangement achieve higher operating 

temperatures, materials such as these may be used as heat transfer fluids (e.g., in a dual tank storage 

system) or as phase-change materials (PCMs). The latter provide the potential for increased energy 

                                                 
6 This chapter has been published previously in the Journal of Solar Energy Engineering [129]. Permission for reuse is provided 
in Appendix B. 
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storage density for limited ranges of operating temperatures owing to characteristically high heats 

of fusion, and moreover they are desirable due to their consistent energy delivery at design 

temperature [23]. 

These salts, however, are typically hampered by relatively low thermal conductivity (less 

than 1 W/m-K in the molten state) [133]. To that end, many conductivity enhancement strategies 

have been explored. These include addition of greater conductivity materials, either as low 

concentration dispersed additives or in greater amounts as components of salt-based composites 

[53, 54]. Much work has also been done in the design of the containment—e.g, use of heat pipes 

or curved slabs to improve conduction and/or convection [47, 134]. 

This study explores a novel heat transfer enhancement strategy for the storage material 

itself. At the higher temperatures where these salts would be applied as storage media (>500°C), 

radiation becomes a significant mode of heat transfer. It is proposed that inclusion of small 

amounts of infrared- (IR-) absorptive additives in highly IR-transmissive salts (e.g., alkali metal 

halides) will allow for greater radiative heat transfer, thereby compensating for characteristically 

low thermal conductivity. 

Determining the degree of improvement requires measurement of the absorption 

coefficient in the spectral range of interest. Unfortunately, traditional spectroscopic methods are 

ill-suited for work with molten salts: direct transmittance measurements overestimate absorption 

if they do not capture backscattering, and many window materials are prone to corrosive attack by 

these molten salts [135]. Another strategy to employ would be attenuated total reflectance 

spectroscopy [136]; but, here again, owing to the close contact between the reflecting prism and 

liquid, material compatibility renders this method impractical. The authors therefore developed a 

new IR-reflectance apparatus (Figure 42) to allow for determination of the spectral absorption 
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coefficient of the newly formulated storage media in the molten state. The apparatus consisted of 

an alumina crucible coated alternately at the bottom with a reflective (platinum) or absorptive 

(graphite) surface, a ceramic heating element housing the crucible, and a combination of zinc 

sulfide (ZnS) and zinc selenide (ZnSe) windows for containment of the salt and allowance of inert 

purge gas flow, respectively. 

This paper specifically addresses the eutectic mixture of potassium and sodium chloride, 

(K-Na)Cl. Both KCl and NaCl are highly transmissive in the spectral region of 2.0 to 13.0 

micrometers (µm), and it is worth noting that at the melting point of the eutectic (657°C), nearly 

90 percent of spectral blackbody emissive power falls within this region, as given by the Planck 

distribution [61]. Various transition metal chlorides of known solubility in KCl and/or NaCl were 

investigated as potential absorptive additives, including cuprous chloride (CuCl), cobaltous 

chloride (CoCl2), ferrous chloride (FeCl2), and nickelous chloride (NiCl2). Using the reflectance 

apparatus, infrared spectra were obtained for these additives at less than 0.2 weight percent (wt %) 

concentration in (K-Na)Cl, and improved infrared absorption and radiative transfer properties were 

demonstrated. Using these spectra, estimations of the absorption coefficient of the additives in the 

pure salt were calculated. Further, thermophysical properties relevant to TES (i.e., melting 

temperature, latent heat of fusion) were measured via differential thermal analysis (DTA) for the 

pure and additive-enhanced PCMs. 

5.2 Background 

A general treatment of the absorptive properties of inorganic salts is given in Modest’s 

description of the Lorentz model, shown to adequately capture the absorption behavior of ionic 

crystals [118]. This model predicts that such materials should have one or more absorption bands 

in the mid- to far- infrared (Reststrahlen absorption) and several absorption bands near the 
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ultraviolet (electronic excitation)—between these absorptive (opaque) regions, ionic crystals are 

generally transparent. A discussion of the quantum-mechanical considerations behind absorption 

and emission of photons in these systems is beyond the scope of this paper; for detailed discussions 

of this topic the reader is referred elsewhere [137-139]. 

In speaking of the absorptive properties of these materials, and those of KCl and NaCl in 

particular, it is worthwhile to note the expansive reference work of Touloukian and DeWitt, which 

collects the radiative properties (reflectance, transmittance, emittance, etc.) of various nonmetallic 

solids [60]. According to data compiled in this reference, KCl is highly transmissive (transmittance 

greater than 90%) in the spectral region of 0.4 to 15.0 µm, for crystals 10 to 12 mm thick; 

analogously, NaCl is highly transmissive in the region of 0.4 to 13.0 µm, for crystals 2.8 to 6.5 

mm thick. Other halides are similarly transmissive over much of the infrared, including calcium 

fluoride, which has also been proposed for TES applications [140]. It bears mentioning that these 

measurements were made at or near room temperature; the near- to mid- infrared absorption of 

such crystalline solids, especially if appreciable concentrations of lattice defects or dopants are 

present within the crystal, can be expected to rise significantly with temperature [118]. (Further 

information on the radiative properties of materials can be found in other references [62, 65], as 

well as in various textbooks [61, 118, 141].) 

Of course, the high transmissivity of either KCl or NaCl does not guarantee that the mixture 

of the two will be itself transmissive; indeed, at room temperature, one will notice that the 

solidified (K-Na)Cl salt is quite opaque to visible radiation, as the cooling solid will self-diffuse 

to form closely packed lamellae of alternatingly high concentration KCl and high concentration 

NaCl phases. Importantly, though, the salt regains its high transmissivity as it heated to elevated 
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temperatures, with a consolute point at approximately 500°C [109]. At this point, the salt becomes 

a homogeneous solid solution which is transparent to visible radiation. 

The (K-Na)Cl eutectic has been studied extensively, and a review of pertinent literature 

yields the properties data relevant to our study here. A collection of these data is compiled in Table 

1 with properties of the pure component salts included for reference. The first entry of the table 

for the eutectic salt was obtained from the thermophysical properties software FactSage [27]; the 

second entry presents calculated values obtained from analytical formulations of the system’s 

thermodynamic mixing properties [142]. The remaining entries are experimental data. It can be 

observed there is significant variability in the data. It is hoped that thermophysical properties data 

collected for this current study will serve to clarify the validity of some of these values. For the 

purposes of this study, the molar composition of the eutectic was taken as 50.02:49.98 KCl:NaCl, 

and the density of the molten salt was taken as 1.58 g/ml. More detailed discussion of the various 

studies performed and their assertions concerning the composition and melting point of the (K-

Na)Cl eutectic salt can be found in the referenced literature [109, 142]. 

The additives for potential radiative absorption enhancement have been chosen on the basis 

of two criteria: 

• Potential for IR-absorption 

• Solubility in the molten salt 

With regard to the first criterion, previous work has shown the potential for transition metal 

oxides—namely Co3O4 and CuO—to increase radiative absorption in the ultraviolet, visible and 

near-IR regions of the electromagnetic spectrum [72]. Further, studies into the middle and far IR 

show broad-band absorption for such transition metal oxides [143]. While these materials are no 

doubt promising for infrared absorption, there is an attendant complication to the use of insoluble 
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additives: maintenance of their suspension in the salt. For PCMs especially, which would likely 

be sequestered in a containment of some kind (e.g., capsule), continuous agitation may be difficult, 

and such additives may aggregate and settle. 

As such, the second criterion, molten salt solubility, was examined critically during the 

selection process. It was determined that the four additives ultimately selected—CuCl, CoCl2, 

FeCl2, and NiCl2—were each miscible in KCl and NaCl as binary solutions; indeed, in the case of 

FeCl2, there is strong suggestion that it would form a solid state compound with KCl (double salt), 

K2FeCl4, which would allow for improved distribution in both the solid and liquid states [110]. 

To describe the method for determination of absorptance from reflection-absorption 

spectroscopy, it is worthwhile to discuss the mathematical basis of the analysis. For a single layer 

of homogeneous molten salt, as one would expect of the chloride systems considered here, the net 

radiation method gives the following equation for overall reflectance, 𝑅𝑅, of the layer [144]: 

 𝑅𝑅 =
𝜌𝜌1 + 𝜌𝜌2 (1 − 2𝜌𝜌1)𝜏𝜏2

1 − 𝜌𝜌1𝜌𝜌2𝜏𝜏2
 (5.1) 

Also, the transmissivity, 𝜏𝜏, of the layer will depend on the pathlength and the absorption 

coefficient, 𝜅𝜅, as follows [145]. 

 𝜏𝜏 = 𝑒𝑒−𝜆𝜆𝜅𝜅/ cos𝜃𝜃𝑖𝑖 (5.2) 

Here, 𝛿𝛿 is the film thickness, and 𝜃𝜃𝑐𝑐 is the angle of incidence of the radiation. For the situation 

under consideration here, we can reasonably specify the thickness of the layer (using a specific 

mass and known density) and the angle of incidence (set by the geometry of the reflectance 

apparatus). Thus, for any single reflectance measurement, there are three unknown quantities: 

1) The reflectivity at the surface of the salt (i.e., nitrogen-salt interface), 𝜌𝜌1; 

2) The reflectivity at the salt-substrate interface, 𝜌𝜌2; and 

3) The absorption coefficient, 𝜅𝜅. 
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In our case, the reflectivity of the salt-substrate interface is measured separately: the reflective 

substrate (platinum) is measured relative to a silvered mirror. The absorptive substrate (graphite) 

is taken to have reflectivity of zero. Hence, from measurement of the reflectance of the salt over 

graphite, we obtain 𝜌𝜌1; given this value and the known value of 𝜌𝜌2, measurement of the reflectance 

of the salt over the platinum value yields the transmissivity of the salt layer. Given the 

transmissivity of the pure salt and that of the additive-salt system, the absorption coefficient, 𝜅𝜅, of 

the additive in the pure salt can be calculated directly. 

All IR spectra were obtained using a Jasco FTIR-6300 Fourier-transform infrared (FT-IR) 

spectrometer. In this system, a high-intensity ceramic source was used in conjunction with a 

mercury cadmium telluride (MCT) detector, effectively limiting the observable spectral range to 

7800 – 650 cm-1 (although the range into the far infrared is further limited by the window materials 

and the salts themselves). 

The heated sample chamber was provided by Pike Technologies of Madison, Wisconsin. 

Designed for diffuse reflectance applications, the chamber consists of a heated ceramic sample 

holder to be used in conjunction with porous alumina crucibles. The heater is capable of reaching 

900°C, and the chamber is cooled by chilled water pumped at a rate of approximately 50 ml/min. 

The cooling water keeps most of the sample chamber at approximately room temperature, so that, 

for instance, during emission measurements, background radiation interference is minimized. 

Using a suitable window (in this case, ZnSe), inert gas purge can be passed through the chamber, 

with the pores of the alumina crucibles allowing the purge gas to pass directly through the (diffuse) 

powdered sample. 

For work with regular reflectance of molten salts, some additional features were introduced 

to the sample holder. Firstly, porous alumina pans would not allow for liquid samples; therefore, 
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solid alumina pans were used. However, these pans provide a hindrance to the flow of the inert 

purge gas. The pans were therefore scored across the bottom in a cross-hatch manner. These 

grooves allowed for purge gas to flow around the sample and beneath the pan to the purge outlet. 

5.3 Methodology 

Important study of the reflectance and optical properties of molten nitrates [146], chlorides 

[69], and carbonates [70] were undertaken by Makino, and a thorough description of their 

apparatus has been given [146]. The basic strategy of this paper’s measurement of radiative 

properties is similar: regular reflection is measured of molten salt over a reflecting background. 

However, our study adds the step of performing a separate measurement over black background 

to elucidate the absorption coefficient. 

It was found that for high vapor pressure salts (notably, metal halides), evaporated salt 

would condense upon and outermost ZnSe window and severely degrade it. Therefore, a second 

additional feature was introduced: a salt containment window to be placed directly over the sample 

crucible such that significant amounts of salt vapor would not be allowed to escape. A variety of 

materials were tested for this purpose; their properties have been presented elsewhere, and these 

data are presented in Table 9 [147]. KCl, NaCl, potassium bromide (KBr), and calcium fluoride 

(CaF2), are all promising as window materials, but they are prone to ion exchange with the evolved 

salt vapors tested here. Hence, they would only serve for one use. (It is possible that these materials 

could be used as pressed powders, significantly reducing the cost of the window material; the 

authors are currently exploring this option.) Also, ZnSe, too, showed a high susceptibility to attack 

by the salts and also by the high temperatures alone. ZnS alone showed the desired resistance to 

degradation upon multiple uses. While the transmissive range of ZnS crystals is smaller than some 

of the other materials, it should cover the spectral range relevant here—namely, 2.0 to 13.0 µm, in 
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which 90 percent of blackbody emissive power at 657°C is captured. (CaF2, on the other hand, 

would cut off this range on longer wavelength side.) A schematic of the dual-window reflectance 

cell is shown in Figure 42. 

To determine the reflectivity of the platinum backing, it was insufficient to make a simple 

regular reflectance measurement at room temperature. Rather, the emissivity of the backing was 

measured against a blackbody radiator, with both sources heated to 680°C. Upon measuring the 

spectral emissivity, the spectral reflectivity for the opaque surface is easily obtained via the well-

known Kirchhoff relations: 

 𝜌𝜌𝑏𝑏 = 1 − 𝜀𝜀𝑏𝑏  (5.3) 

It should be emphasized that the relation above is accurate for spectral quantities—e.g., owing to 

spectral variability of radiative properties, the same relation does not apply to total reflectivity and 

emissivity. Also, strictly speaking, this yields the normal incidence spectral reflectivity; due to the 

relatively small angles of incidence considered here, no correction shall be applied for any 

directional variation in the following analyses. The blackbody reference used was an IR-563/301 

manufactured by Infrared Systems Development Corporation of Winter Park, Florida. 

DTA measurements were performed using a TA Instruments SDT-Q600 TGA/DSC. A 

three-point calibration of the instrument was performed using high purity tin, zinc, and sodium 

fluoride as calibrants. The cell constant (latent heat) was calibrated using high purity zinc. Samples 

were placed in platinum pans to prevent the creeping of salt samples during melting and 

solidification. In each case, samples were melted twice; the second run (after formation of the 

binary / ternary system) was used to obtain thermophysical properties. Multiple samples for each 

material were tested, and averaged values obtained. All measurements were made under argon 

purge flow at a heating rate of 10°C/min. 
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A novel method was applied to prepare samples for study.  Given the potential for the 

additives to solid solutions or double salts with bulk NaCl and/or KCl, the following strategy was 

employed: 

1) Additives were mixed at a concentration of 0.4 wt % in agate mortar with 

spectroscopic-grade NaCl in a glovebox under inert gas. 

2) The mixtures were heated to approximately 250°C for 24 hours in the glovebox to 

encourage formation of solid solutions. 

3) The heated mixtures were then mixed in agate mortar with the required quantity of KCl 

(99.997% purity, metals basis). The resultant mixtures were approximately 0.18 wt % 

additive. 

4) Throughout the following analyses they were kept in a vacuum desiccator or drying 

oven kept at 110°C. 

These moisture control steps were important, since three of the four additives considered 

(excepting CuCl) are known to be very hygroscopic. The concentrations of the salt systems studied 

are shown in Table 10.  

5.4 Results 

The measured reflectance of the platinum substrate is shown in Figure 43.  The reflectivity 

is comparatively high, and so will serve the purpose of providing a reflective background to the 

semi-transparent molten salts. 

Next, the salts’ spectra were measured. Upon heating, it was observed that the 

characteristic spectra of the loose powder samples changed dramatically upon melting, thus 

making it a simple matter to determine when to collect the spectra. That said, the general procedure 

involved heating the sample / background to approximately 680°C, which ensures the melting 
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would take place rapidly. Spectra were collected as soon as the melt had occurred, which could be 

verified by visual examination of the sample. 

In Figure 44(a), the spectra obtained for the pure eutectic salt are presented—namely, the 

reflectance of the overall system (𝑅𝑅), the reflectivity of the salt-nitrogen interface (𝜌𝜌1), and the 

calculated transmissivity (𝜏𝜏) from the net radiation method [144]. (The reflectivity of the platinum 

substrate, 𝜌𝜌2, is illustrated in Figure 43.) Similar spectra are obtained for each of the salt-additive 

systems, and these are depicted in Figure 44(b). 

Given the transmissivity of the salt systems, it is possible to make an estimation of the 

absorption coefficient of the additive materials in the pure eutectic salt. For these calculations, the 

density of the salt is assumed unchanged upon addition of the small concentration (~0.18 wt %) of 

additive—i.e., the film thickness, 𝛿𝛿, is assumed to be constant in each case. The angle of incidence 

for the geometry considered here is approximately 30.6°. The calculated absorption coefficients 

for each additive-salt system are presented in Figure 45. Note that these measurements show 

absorption relative to the pure fused eutectic salt [e.g., see Figure 44(a)], which itself was found 

to have a transmissivity of approximately 0.9. 

The spectra obtained agree qualitatively with expected behavior: the pure eutectic appears 

mostly transparent.  Inclusion of the additives results in a marked decrease in the measured 

reflectance, especially in the case of FeCl2. From the calculated absorption coefficients, it is clear 

that the additives increase infrared absorption, and therefore they are promising candidates for heat 

transfer enhancing additives. One exception is the case of NiCl2 at wavelengths greater than 12 

µm. Here, the absorption coefficient is approximately zero, and it is likely that the additive has no 

effect on the absorption of the pure eutectic in this region. It is also prudent to note here that the 

FeCl2 measurement was complicated by the formations of oxides, which likely exaggerated the 
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degree of attenuation in this case.  This was the only sample that displayed any evidence of oxide 

formation—it is possible that the other additives are less prone to this issue, although it may simply 

have been an error of the experimental apparatus (e.g., greater infiltration of oxygen or moisture 

into the reflection cell).  Further measurements are planned which will take care to void the sample 

chamber of oxygen / moisture prior to measurement. In any event, this behavior deserves 

consideration if these materials are to be employed in larger-scale TES units. Oxidation of the 

material can be avoided, for instance, through atmospheric control, use of a preferential oxidizer 

(i.e., getter), etc. 

The thermophysical properties measured by DSC are presented in Table 11. As can be 

seen, the heat of fusion and melting point for the pure eutectic system agree well with literature 

values [142]. Note that while the melting temperatures of the additive-enhanced materials are 

slightly lower than that of the pure salt (as one would expect by inclusion of a solute), the latent 

heat of fusion, of primary importance for PCM storage media, seems little impacted. Indeed, in 

the case of the divalent additives especially, there is an apparent increase in latent heat, although 

this increase lies well within the error of measurement. It is not unreasonable that latent heat would 

increase upon addition of small amounts of soluble additive, and this phenomenon is observed in 

the NaCl-KCl system. Addition of small amounts of KCl to pure NaCl increases the latent heat of 

fusion, most likely because the presence of the larger impurity potassium ions creates regions of 

stress that attract and “pin” the moving lattice vacancies required for phase change (i.e., more 

energy required for melting) [31]. Of course, at higher concentrations, the competing effect of 

weakening the lattice causes the latent heat to decrease (i.e., less energy required for melting). 

From the available data, though, it seems that the latent heat is approximately unchanged upon 

addition of the additive. The melting point, also, is little changed by addition of additives, with the 
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highest melting point depression, approximately 1.0°C, occurring in the CuCl-(K-Na)Cl system. 

In either case, the additive does not significantly impact the performance of the PCM as a TES 

medium. 

5.5 Conclusions / Future Work 

An IR-reflectance apparatus was developed for testing the radiative absorption of novel 

inorganic salt thermal storage media in the molten state. The method of collection of the overall 

layer-substrate reflectance and the salt surface reflectivity by means of two different substrate 

materials (platinum and graphite) has been demonstrated. The inclusion of transition metal 

chloride additives shows distinct increases in absorption in the infrared, with only slight impacts 

on melting temperature and latent heat of fusion. 

Further work currently underway includes the collection of spectra from additional samples 

to determine the error in measurement method, as well as from different concentrations to estimate 

the concentration dependence of radiative absorption. Part of this study includes working with 

thinner windows made of pressed halide powders; as mentioned above, these materials would be 

good for only one use, but they may prove a good choice due to their significantly lower cost, 

relative to polished crystal optics. It would also be prudent to test the results obtained here with a 

method based on the emissivity of the substrate / salt system, as has been described by Makino 

[148]. Such efforts are currently underway. Also, the specific heat capacity of these systems is 

being measured, in the solid and, if possible, molten states. It is not anticipated, however, that such 

small concentrations of additives will have a significant impact on this property of the salt. 

Radiative transfer in TES systems is valuable area of research, in light of the fact that 

radiation can play a major role in heat transfer in the next generation of high temperature TES. 

Spectroscopy, whether through transmission, reflection, or emission measurements, is a direct 
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means of characterizing the radiative properties of materials needed in these systems. It is hoped 

that this paper will encourage further work in the field of radiative properties measurement in 

general and molten salt spectroscopy in particular. 

 

 

Figure 42 Molten salt reflectance cell.  
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Figure 43 Measured reflectivity of platinum substrate.  

 
(a) 

 
(b) 

Figure 44 Transmissivity determination of pure eutectic salt and additive-salt systems. Pure (K-
Na)Cl spectra are shown in (a); calculated transmissivities for the additive-salt systems are shown 
(b).  
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Figure 45 Absorption coefficients of additives in (K-Na)Cl.  
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Table 8 Thermophysical properties of chloride eutectic salt and constituents  

Salt 
Mole % 

(KCl:NaCl) Tm (°C) ΔHfus (J/g) 
cp (J/g-K) Density (g/ml) 

T = 600°C T = 700°C T = 600°C T = 700°C 
KCl [149] 100:0 770.9 353 0.858 1.98 
NaCl [149] 0:100 800.7 482 1.04 2.16 
(K,Na)Cl 50.02:49.98 656.74 306 0.945 1.08 2.08 1.58 

[142] 48.5:51.5 657 278 - - 
[31] 50:50 661 273 ± 8 - - 
[84] 50:50 658 - - - 1.58 
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Table 9 Window materials considered for molten salt study 

Window 
material 

Transmissive 
range (cm-1) 

[147] 
Transmissive 
range (µm) 

CaF2 25,000 – 800 0.40 – 12.5 
KBr 40,000 – 200 0.25 – 50 
KCl 47,600 – 300 0.210 – 33 
NaCl 47,600 – 400 0.210 – 25 
ZnS 10,000 – 700 1.0 – 14 
ZnSe 22,200 – 500 0.45 – 20 

 
 
 

Table 10 Additive concentrations in pure (K-Na)Cl 

Additive Weight % Mole % 
CoCl2 0.176 0.0986 

CuCl 0.176 0.125 

FeCl2 0.176 0.101 

NiCl2 0.176 0.0988 
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Table 11 Measured thermophysical properties for pure salt and additive-salt systems. Selected literature data are included for 
comparison.  

Salt 
Tm (°C) ΔHfus (J/g) 

Our work Literature [19] Our work Literature [31] 
(K,Na)Cl 657.2 ± 0.2 658 282 ± 16 273 ± 8 
+ 0.18 wt % CoCl2 656.5 ± 1.1   290 ± 15   
+ 0.18 wt % CuCl 656.2 ± 0.2   283 ± 6   
+ 0.18 wt % FeCl2 656.8 ± 0.2   293 ± 27   
+ 0.18 wt % NiCl2 656.5 ± 1.2   295 ± 14   
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CHAPTER 6 STORAGE SYSTEM MODELING 

6.1 Introduction 

In this chapter, we attempt to quantify the performance enhancement that can result by 

incorporation of some of the additives discussed previously into the pure PCMs. The main 

difficulty in these analyses concerns modeling the phase change—namely, solid-to-liquid—as a 

transient process. Below, we discuss this various approaches to this and other problems in the 

modeling of these systems. 

6.2 Direct Conductivity Enhancement 

A simple model for solidification of a material with conductivity enhancing additives has 

been discussed by Siegel [56]. First, we consider the situation where the PCM takes the geometry 

of a slab. An energy balance over a differential layer of thickness 𝑑𝑑𝛿𝛿 yields 

 ∆𝐻𝐻𝑓𝑓𝑓𝑓𝑠𝑠𝜌𝜌𝑠𝑠(1 − 𝜙𝜙)
𝑑𝑑𝛿𝛿
𝑑𝑑𝑡𝑡

=
𝑇𝑇𝑚𝑚 − 𝑇𝑇𝑐𝑐

1
ℎ𝑐𝑐

+ 𝑤𝑤
𝑘𝑘𝑤𝑤

+ 𝛿𝛿
𝑘𝑘′

 (6.1) 

In this equation, 𝜙𝜙 represents the volume fraction of high conductivity particles, 𝑇𝑇𝑐𝑐 is the 

temperature of the cooling fluid (HTF), ℎ𝑐𝑐 is the convective transfer coefficient of the HTF, 𝑤𝑤 is 

the width of the wall, 𝑘𝑘𝑤𝑤 is the conductivity of the wall, and 𝑘𝑘′ is the conductivity of the composite 

material (PCM). Both ∆𝐻𝐻𝑓𝑓𝑓𝑓𝑠𝑠 and 𝜌𝜌𝑠𝑠 represent properties of the pure PCM—that is, without high 

conductivity additives. 

 To simplify the problem, we assume the containment wall is thin and has comparatively 

high thermal conductivity (i.e., 𝑤𝑤/𝑘𝑘𝑤𝑤  → 0) and there is comparatively high convective heat 
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transfer with the HTF (i.e., 1/ℎ𝑐𝑐  → 0). Under the stated assumptions, and carrying out the 

integration, we obtain 

 

 
𝛿𝛿 = �

2𝑘𝑘′

1 − 𝜙𝜙
 �
𝑇𝑇𝑚𝑚 − 𝑇𝑇𝑐𝑐
∆𝐻𝐻𝑓𝑓𝑓𝑓𝑠𝑠𝜌𝜌𝑠𝑠

� 𝑡𝑡�
0.5

 (6.2) 

Similarly, we can examine the heat removed with the CuO-enhanced storage media and the pure 

salt. The heat removed per unit surface area can be defined as [56]: 

 
𝑄𝑄
𝐴𝐴

= ∆𝐻𝐻𝑓𝑓𝑓𝑓𝑠𝑠𝜌𝜌𝑠𝑠(1 − 𝜙𝜙)𝛿𝛿 (6.3) 

Perhaps a more realistic situation is that of a cylindrical tube. We consider the situation 

where the HTF flows through a tube with PCM on the outside—that is, a shell-side PCM heat 

exchanger. In this case [56]: 

 ∆𝐻𝐻𝑓𝑓𝑓𝑓𝑠𝑠𝜌𝜌𝑠𝑠(1 − 𝜙𝜙)2𝜋𝜋𝑟𝑟𝜅𝜅
𝑑𝑑(−𝑟𝑟𝜅𝜅)
𝑑𝑑𝑡𝑡

=
2𝜋𝜋(𝑇𝑇𝑚𝑚 − 𝑇𝑇𝑐𝑐)

1
ℎ𝑐𝑐𝑟𝑟𝑐𝑐

+ 𝑙𝑙
𝑘𝑘𝑤𝑤

ln �𝑟𝑟𝑐𝑐𝑟𝑟𝑐𝑐
�+ 𝑙𝑙

𝑘𝑘′ ln �𝑟𝑟𝜅𝜅𝑟𝑟𝑐𝑐
�
 (6.4) 

where 𝑟𝑟𝜅𝜅 is the advancing solidification front, 𝑟𝑟𝑐𝑐 in the inner radius of the HTF tube, and 𝑟𝑟𝑐𝑐 is the 

outer radius of the HTF tube. Under the simplifying assumptions, integrating yields 

 𝑟𝑟𝜅𝜅2 ln �
𝑟𝑟𝜅𝜅
𝑟𝑟𝑐𝑐
� −

1
2
�𝑟𝑟𝜅𝜅2 − 𝑟𝑟𝑐𝑐2� =

2𝑘𝑘′

1 − 𝜙𝜙
�
𝑇𝑇𝑚𝑚 − 𝑇𝑇𝑐𝑐
∆𝐻𝐻𝑓𝑓𝑓𝑓𝑠𝑠𝜌𝜌𝑠𝑠

� 𝑡𝑡 (6.5) 

To solve for the radius of the solidified layer, 𝑟𝑟𝜅𝜅 as a function of time, numerical methods are 

required. Also, the heat removal per unit surface area is formulated as 

 
𝑄𝑄
𝐴𝐴

=
1
2
∆𝐻𝐻𝑓𝑓𝑓𝑓𝑠𝑠𝜌𝜌𝑠𝑠(1 − 𝜙𝜙)𝑟𝑟𝑐𝑐 ��

𝑟𝑟𝜅𝜅
𝑟𝑟𝑐𝑐
�
2
− 1� (6.6) 

Considering the data we obtained in Chapter 3, we can now model the performance 

enhancement of the higher conductivity composite. The conductivity of the salt-nanoparticle 

mixture, 𝑘𝑘′, is obtained by extrapolation of the thermal diffusivity data to 𝑇𝑇 = 306.5°C, then using 

the methods described in Section 3.2.2 Results and Discussion to calculate thermal conductivity; 
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the result is a thermal conductivity of pure NaNO3 of 0.489 W/m-K and that of the CuO-NaNO3 

mixture of 0.556 W/m-K. An examination of Equation (6.2) shows that for any size TES unit, the 

increase in conductivity provided by addition of the CuO nanoparticles will result in a 12% 

decrease in discharging time. 

Using this model, we plot the solid layer growth for the pure PCM (𝛿𝛿𝑠𝑠) and the PCM-

additive mixture (𝛿𝛿𝑚𝑚) in Figures 46 and 47, for the slab and cylindrical geometry, respectively.  

6.3 Radiative Transfer Enhancement 

 Owing to the fact that the radiative transfer equation, barring simplifying assumptions, 

takes the form of an integro-partial differential equation, numerical methods—generally, finite 

element methods—are needed to quantify the effects of radiative transfer enhancement [61]. The 

strategy behind radiative heat transfer enhancement is to increase absorption of thermal radiation 

in the bulk volume of the PCM; in this way, while the PCM is solidifying at the boundary of the 

container with conduction-limited heat transfer, additional heat is passing to the bulk PCM from 

the container walls. Furthermore, as the solidification front progresses, the wall is heating the 

furthest edge of the solidification front with radiation in addition to conduction. For this study, we 

examine a cylindrical PCM capsule 3 inches in diameter and 2 inches in height.  

 Using the finite element modeling software COMSOL, we modeled the steady-state 

radiative heat flux in an effort to optimize the absorption coefficient. For an absorption coefficient 

of 100m-1, the dimensionless heat flux is plotted as Figure 48. Simulations were conducted at a 

variety of absorption coefficients, and these data are plotted in Figure 49. It can be seen that the 

heat flux increases approximately monotonically with absorption coefficient up to approximately 

110m-1 (the optimum point). At higher absorption coefficient, the heat flux decreases. This 

behavior corresponds to the radiative transfer passing from the optically “thin” limit to the 
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optically “thick” limit. In choosing additives and additive concentration, this optimum will serve 

as a guide. 

 

 

Figure 46 Pure PCM compared with high conductivity composite in slab geometry. Pure PCM 
layer thickness is 𝛿𝛿𝑠𝑠; additive-PCM composite layer growth is 𝛿𝛿𝑚𝑚.  
 

 

Figure 47 Pure PCM compared with additive enhanced PCM in tube geometry.  
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Figure 48 Dimensionless heat flux in PCM capsule with 100 m-1 absorption coefficient. 

  

 
Figure 49 Dimensionless heat flux as a function of absorption coefficient. 
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CHAPTER 7 CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 

This research was undertaken in an effort to improve heat transfer in inorganic salt based 

TES media. Two distinct strategies were explored: direct thermal conductivity enhancement 

through the use of high conductivity particles / additives, and heat transfer enhancement through 

increase of thermal radiation transfer. With regard to direct thermal conductivity enhancement, 

CuO nanoparticles were shown to provide a significant increase in thermal conductivity in nitrate 

salt-based storage media, although the increase was generally more pronounced in the case of 

KNO3 or the (K,Na)NO3 eutectic salt than in the case of NaNO3.  In a separate study, comparatively 

small amounts of graphene nanoflakes, when added to NaNO3, showed demonstrably greater 

thermal diffusivity enhancement, relative to the CuO nanoparticles. 

Radiative heat transfer improvement is accomplished by increasing infrared absorption of 

transparent materials through the addition of optically active media. In this work, the eutectic salt, 

(K,Na)Cl, which is mostly transparent in the infrared, was shown to have higher infrared 

absorption with the addition of small amounts (~0.2 wt %) of transition metal chlorides. The 

increased absorption was quantified using a molten salt reflectance cell. 

Mathematical modeling was performed in an effort to elucidate the potential TES 

performance enhancement upon inclusion of the various additives. In the case of direct 

conductivity enhancement, it was shown that an improvement in discharge time of approximately 

12% was achievable with the addition of only 2 % by volume of CuO nanoparticles to NaNO3 

LHTES media. Finite element analysis of the chloride salt as a participating medium was used to 

assess the ideal absorption coefficient for the highest heat flux at the container wall boundary; with 
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this information, and given the absorption coefficient of the additives, an optimum additive 

concentration can be calculated. 

Future work on this topic should include transient analysis of the coupled heat transfer 

involving radiative heat transfer of the additive-salt systems. This would allow for meaningful 

conclusions to be drawn concerning the performance enhancement of the additives. Further, the 

problem of scattering and / or anisotropic radiative transfer should be examined, although such an 

effort would require additional analytical models (e.g., that of Mie) or numerical methods (e.g., 

Monte Carlo simulation). While scattering should not play a role in the homogeneous chloride salt 

mixtures—that is, because the molten salt solution is assumed to be uniform in optical properties 

such as the refractive index—additive particles of differing refractive index, such as oxides, would 

induce some degree of scattering. If these particles are pursued as potential infrared absorptive 

media for increase radiative heat transfer, the degree of scattering would have to be known in order 

to optimize the system. 
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APPENDIX A. NOMENCLATURE 

 
A.1 Acronyms  

𝐴𝐴𝐴𝐴𝐻𝐻𝑅𝑅𝐴𝐴𝐴𝐴 American Society of Heating Refrigerating and Air-Conditioning Engineers 

𝐶𝐶𝐴𝐴𝐶𝐶 Concentrating solar power 

𝐷𝐷𝐴𝐴𝐶𝐶 Differential scanning calorimetry 

𝐴𝐴𝐼𝐼𝐴𝐴 Energy Information Administration (U.S.) 

𝐹𝐹𝑇𝑇𝐼𝐼𝑅𝑅 Fourier-transform infrared (spectroscopy) 

𝐻𝐻𝑇𝑇𝐹𝐹 Heat transfer fluid 

𝐼𝐼𝑅𝑅 Infrared 

𝐿𝐿𝐶𝐶𝐿𝐿𝐴𝐴 Levelized cost of electricity 

𝐿𝐿𝐹𝐹𝐴𝐴 Laser flash analysis 

𝐿𝐿𝐻𝐻𝑇𝑇𝐴𝐴𝐴𝐴 Latent heat thermal energy storage 

𝑁𝑁𝑅𝑅𝐴𝐴𝐿𝐿 National Renewable Energy Laboratory 

𝑁𝑁𝐴𝐴𝑅𝑅𝐷𝐷𝑁𝑁 National Solar Radiation Database (NREL) 

𝑇𝑇𝐴𝐴𝐴𝐴 Thermal energy storage 

𝑇𝑇𝑇𝑇𝐴𝐴 Thermo-gravimetric analysis 

𝑀𝑀𝐶𝐶𝑇𝑇 Mercury cadmium telluride 

𝐶𝐶𝐶𝐶𝑀𝑀 Phase-change material 

  

A.2 Symbols  

𝑐𝑐 Speed of light 

𝑐𝑐𝑝𝑝 Specific heat capacity 

𝑐𝑐𝑝𝑝,𝑙𝑙 Specific heat capacity of the liquid phase 

𝑐𝑐𝑝𝑝,𝑠𝑠 Specific heat capacity of the solid phase 

𝑑𝑑 Sample thickness 
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𝑒𝑒𝑏𝑏𝑏𝑏 Spectral emissive power of a blackbody 

ℎ Planck constant 

∆𝐻𝐻𝑓𝑓𝑓𝑓𝑠𝑠 Latent heat of fusion 

𝐼𝐼 Radiant intensity 

𝐼𝐼𝑏𝑏𝑏𝑏 Solar irradiance, beam normal 

𝐼𝐼𝑏𝑏𝑏𝑏 Spectral blackbody radiant intensity 

𝐼𝐼𝑏𝑏 Spectral radiant intensity 

𝐼𝐼𝑐𝑐 Irradiance incident on surface 𝑖𝑖 

𝑘𝑘𝑠𝑠 Thermal conductivity  

𝑚𝑚 Mass 

�̇�𝑚 mass flow rate  

𝐶𝐶 Pressure  

𝑄𝑄 Heat 

𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 Conductive heat flux 

𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣 Convective heat flux 

𝑄𝑄𝑟𝑟 Radiative heat flux 

𝑞𝑞 Heat flux  

𝑅𝑅𝑐𝑐 Radiosity of surface 𝑖𝑖 

𝑇𝑇 Temperature  

𝑇𝑇𝑚𝑚 Melting temperature 

𝑇𝑇∞ Ambient temperature  

𝑡𝑡0.5 Time to reach half of the maximum temperature 

  

A.2 Greek Letters  

𝛼𝛼 Thermal diffusivity 

𝛼𝛼𝑐𝑐  Absorptivity of surface 𝑖𝑖  

𝜖𝜖 Emissivity 

𝜖𝜖𝑒𝑒𝑓𝑓𝑓𝑓  Effective emissivity 

𝜖𝜖𝑏𝑏 Spectral emissivity 

𝜖𝜖𝑤𝑤 Emissivity of wall surface 



www.manaraa.com

 

121 
 

𝜅𝜅 Boltzmann constant 

𝜆𝜆 Wavelength  

𝜌𝜌𝑐𝑐 Reflectivity of surface 𝑖𝑖 

𝜌𝜌 Density  

𝜌𝜌𝑙𝑙 Density, liquid phase  

𝜌𝜌𝑠𝑠 Density, solid phase  

𝜎𝜎 Stefan-Boltzmann constant  

𝜏𝜏𝑐𝑐 Transmissivity of surface 𝑖𝑖 
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Below is permission for the use of material in Chapter 5. 
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